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FOREWORD

Advanced Weibull methods have becn developed at Pratt & Whitney Aircraft in a joint
effort between the Government Products Division and the Commercial Products Division.
Although these methods have been used in aifcraft engine projects in both Divisions, the
advanced technologies have never been published, even though they have been presented and
used by the U. 8. Air Force (WPAFB), U. 8. Navy (NAVAIR) and several component
manufacturers.

The authors would like to acknowledge the contribution to this work made hy sevoral other
Pratt & Whitney Aircraft employees: D. E. Andress, F. E. Dauser, J. W, Grdenick,
J. H. Isiminger, B. J. Kracunas, R Morin, M. E. Ohernesser, M. A. Proschan, and-
B. G. Ringhiser.

The key Air Force personnel that encburagéd publication were: Garv Adams, Dr. 'I‘oxln
(‘umn. Jlm Day, Bl“ Troha and Don Zablerek (the USAF Program Manager) all at Wl'Al’-‘B

"l‘he following members of the Ameman !nstltute of Aeronauucs and Astronautics
Systems Effectiveness and Safety Committee provided valuable constructive reviews for which
the authors are indeb:ed: M. Berssenbrugge, R. Cosgrove, P. Dxck T. P. Enright, J. F. Kent, L.
Knight, T. Prasinos, B. F. Shelley, and K. L.Wong

The authors would be pleased to review constructive comments for future revisions.
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CHAPTER 1

/

INTRODQCTICN TO WEIBULL ANALYSIS

1.1 OBJECTIVE

The objective of this handbook is to provide an understanding of hoth the standard and
advanced Weibull techniques that have been developed for failure analysis. The authors intend
o that their presentation bhe such that a novice engineer can perform Weibull analysis after
studying this document.

12 BACKGROUND

Waloddi Weibull delivered his hallmark paper on this subject! in 1951. He claimed that
his distribution, or more specifically his family of distributions, applied to a wide range of
problems. He illustrated this point with seven examples ranging from the yield strength of steel
to the size of adult meles born in the British Isles. He claimed that the function “..may
sometimes render good service”. He did not claim that it always worked or even that it was
always the best choice. '

Time has shown that Waloddi Weibull was correct in all of those statements and
particularly within the aerospace industry. The initial reaction to his psper in the 1950's and
even the early 1960’s was negative, varying from skepticism to outright rejection. Only after
pioneers in the field experimented with the method and verified its wide application did it
become popular. Today it has many applications in many industries and in particular the
aerospace industry. There are special problems in aerospace and unusual arrays of data. Special
methods had to be developed to apply the Weibull distribution. The authors believe there is a
need for a standard reference for these newer methods as applied within the aerospace industry,
and to industry in general.

1.3 EXAMPLES

The following are examples of aerospace problems that may be solved with Weibull
analysis. It is the intent of this docuinent to illustrate how to answer these and many similar
questions through Weibull analysis.

. A project engineer reports three failures of his component in service

TTTTTT 7T operations in a'six week period. Questions asked by the Program Manager
are, “How many failures are predicted for the next three months, six
months and one year?” '

. “To order spare parts that may have a two to three year lead time, how
may the number of engine modules that will be returned to a depo.. be
forecast for three to five years hence month by month?”

e “What effect on maintainability support costs would the addition of the
new split compressor case feature have relative to a full case?”

. “If the new Engineering Change eliminates an existing failure mode, how
many units must be tested for how many hours without any failures to
demonstrate with 90% confidence that the old failure mode has either
been eliminated or significantly improved?” .

! Weibull, Waloddi (1951). A Statistical Distribution Function of Wide Apphcabllny Journal of Applied ! lechanics, pg.
293-297.
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14 SCOPE

As treated herein, Weibull analysis application to failure analysis includes:

Plotting the data

Interpreting the plot

Predicting future failures

Evaluating various plans for corrective acticns

Substsntiating engineering chanses that correct failure modes.

Data problems and deficiencies are discussed with recommendations to overcome
deficiencies such as: ‘

Censored data
Mixtures of failure n:odes
Nonzero time origin (t_ cor. 2ction)
No failures
Extremely small samples .
Strengths and weaknesses of ‘he method. ]
_ : . |

. Statistical and mathematical derivations are presented in Appendices to supplement the
main bhody of the handbook. There are brie: discussions of alt;ernative distributions such as the
log normal. Actual case studies of aircraft angine problems are used for illustration. Where
problems are presented for the reader to solve, answers are supplied. The use of Weibull
distributions in mathematical models and simulations is also d!éscribed.

1.5 ADVANTAGES OF WEIBULL ANALYSIS l

® € o o o o

One advantage of Weibull analysis is that it provides a simple graphical solution. The
process consists of plotting a curve and analyzing it. (Figure 1.1). The horizontal scale is some
measure of life, perhaps start/st>p cycles, operating time, or éas tucbine engine mission cycles.

- The vertical acale is the probability of the occurrence of the évent. T'he slope of the line (8) is

particularly significant and may provide a clue to the physics of the failure in question. The -
relationrhip between various values of the slope and typical faii‘ure modes is shown in Figure 1.2.
This type of analysis relating the slope to possible failure modes can be expanded by inspecting
libraries of past Weibull curves. ' ' :

Another advantage of Weibull analysis is that it may be useful even with inadequacies in
the data, as will be indicated later in the section. For example, the technique works with small
samples. Methods will be described for identifying mixtures of failures, classes or modes,
problems with the origin being at other than zero time, investigations of alternative scales other
than time, non-sericiized parts and ccmponents where the time on the part canaot be clearly
identified, and even the construction of a Weibull curve when there are no failures at all, only

succens data.

In addition, as there are only a few alternatives to the Weibull, it is not difficult to make
graphic comparisons to determine which distribution best fits the data. Further, if there is
engineering evidence supporting another distribution, this should be considered and weighted
heavily against the Weibull. However, it has been the writers’ experience that the Weibull
distribution most frequently provides the best fit of the type of data experienced in the gas
turbine industry. . ‘ . ‘
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1.6 AGING TIME OR CYCLES

Most applications of Weibull anaiysis are based on a single failure class or mode from a
single pa:i or component. An ideal application would consist of a sample of 20 to 30 failures.
Except tor material characterization laboratnry tests, ideal data are rare; usually the analysis is
started with a few failures emnbedded in a Iarge number of successful, unfailed or censored units.
The age of each part is required. The units of age depend on the part usage and the failure
mode. For example, low and high cycle fatigue may produce cracks leading to rupture. The age
units would be fatigue cycles. The age unit of a jet starter may be the number of engine starts.
Burner and turbine parts may fail as a function of time at high temperature or as the number of
excursions from cold to hot and return. In most cases, knowledge of the physics-of-failure will ,
provide the age scale When the units ot age are unknown, several age scales must be tried to
determine the best fit.

1.7 FAILURE DISTRIBUTION

The first use of the Weibull plot will be to determine the parameter g, which is known as -
the siope, or shape parameter. Beta determines which member of the family of Weibull failure
distributions best fits or describes the data. The failure mode may be any one of the types
represented by the familiar reliability bathtub curve, infant mortality with slopes less than one,
random with slopes of one, and wearout with slopes greater than one. See Figure 1.2. The
Weibull plot is also inspected to determine the onset of the failure. For ex~mple, it may be of
interest to determine the iime at which 1 of the population will have failed. This is called B1
life. Alvernatively, it may be of int:rest in determining the time at which one tenth of 1 *¢ of the
population will have failed, which is called B.1 life. These values can be read from the curve hy
inspection. See Figure 1.3.

1.8 RISK PREDICTIONS

If the failure occurred in service operations, the responsible engineer will be interested in a
prediction of the number of failures that might be expected over the next three muaths, six
months, a year, or two years. Methods for making these predictions are treated in Chapter . A
tyzical risk prediction is shown in Table 1.1. This p-ocess may provide information on .vhether
or not the failure mode applies to the entire fleet or to only-one portion of the fleet. which is
often calied a batch. After the responsible engineer develops alternative plans for corrective
action, including production rates and retrofit dates, the risk predictions will be repeated. The
decision maker will require these risk predictions in order to select the best course of action.

1.9 ENGINEERING CHAMNGES AND MAINTENANCE PLAN EVALUATION

Weibull analysis is used to evalvate engineering changes as to their effect on the entire
fleet of engines. Maintenance schedules and plans are also evaluated using Weibull analvsis.
These techniques are illustrated in Chapter 6 — Case Histories with Weibul! Applications. In
vach case the baseline Weibull analysis is conducted without the engineering change or
maintenance change. The study is then repeated with the estimated effect of the change

modifying the Weibull curve. The difference in the two risk predictions represents the net effect
of the change. The risk parameters may be the predicted number of failures, life cycle cost,
depot loading, spare parts usage, hazard rate, or aircraft availability.
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TABLE 1.1. WEIBULL RISK
FORECAST ’

Risk Pred.ction for- 12 Months
Beginning July 1978

11.77 0.00 raore failures in 0 mcnths
15.12 3.35 more failures in 1 month
19.18 7.41 more failures in 2 months
'24.07 12.30 more failures in 3 months
29.87 * 18.10 more failures in 4 months
36.€9 24.92 more failures in 5 months
44.60 32.33 more failures in 6 months
53.68 41.91 more failures in 7 1aonths
63.97 52.20 more failures in 8 months
75.53 63.76 more failures in 9 months
88.35 76.58 more failures in 10 months
102.42 90.656 more failures in 11 months

117.69 105.92 more failures in 12 months

What if? —~ Corrective action next munth, next
yecr i

1.10 MATHEMATICAL MODELS

Mathematical models of an ertire engine system including its control system may be
producec by combining the effects of several hundred failure modes. The combination may be
done by Monte Carlo simulation or by analytical methods. These models have been usztul for
predicting spare parts usage, aveilability, module returns to depot, and maintainability support
conats. Generally, these models are updated with the latest Weibulls once or twice a year and

predictions are re, 2nerated for review.

1.11 WEIBULLS WITH CUSPS OR CURVES’

~ 'The Weibull plot should be inspected to determine how well the failure data fit the
straight line. The scatter should be evenly distributed about the line. However, sometimes the
failure points will not fall on a straight line on the Weibull plot, and modification of the simple
Weibull approach may be required. The bad fit may relate to the physics.of the failure or to the
quality of the data. There are at least two reasons why a bad fit may occur. First, the origin — If
the points fall on ge~tle curves, it may be that the origin of the age scale is not located at zero
See Figure 1.4. There may be physical reasons why this will be true. For example, with roller
bearing unbalance, it may take a minimum amount of time for the wobbling roller to destroy the
cage. This would lead to an origin correction equal to the minimum time. The origin correction
may be either positive or negative. A procedure for determining the origin correction is given in
Chapter 2. '

Second, a mixture of failure modes — Sometimes the plot of the failure points will show
cusps in sharp corners. This is an indication that there is more than one failure mode, i.e. a
mixture of failure modes. See Figure 1.5. In this case it is necessary to conduct a laboratory
failure analye’s of each failure to determine if separate failure modes are present. If this is found
to be the care, then separate Weibull plots are made for each set of data for each failure mode. If
the laboratory analysis successfully categorized the failures into separate failure modes, the
separate Weibu!l plots will show straight line fits, that is, very little data scatter. On each plot
the failure data points from the other failure modes are treated as successful (censored or non-
failure) units, '

e
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1.12 SYSTEM WEIBULLS

If the data from a system suck as a jet engine are not adequate to plot individual failure
modes, it is tempting to plot a single Weibull for the system based on mean-time-between-
failures (MFBF), assuming g = 1. This approach is fraught with difficulties and should be
avoided if possible. However, there may ke no alternative if the system does not have serialized
part identification or the data do not identify the type of failure for each failure time. Some
years ago it was popular to produce system Weibulls for the useful life period (Figure 1.6)
assuming constant failure rate (8 = 1.0). Electronic systems that do not have wearout modes
were often analyzed in this manne:. More recently, some studies irdicate electronics may have a
decreasing failure rate, i.e. a ¢ of less than one.! Although data defiviencies may force the use of
system Weibull analysis, a math model combmmg individual Welhull modes is preferred
because it will be more useful and accurate.

1.13 NO-FAILURE WEIBULLS

In some cases, there is a need for 8 Weibull plot even when no failures have occurred. For
example, if an engineering change or a maintenance plan modification is made to correct a
failure mode experienced in service, how much success time is required before it can be stated
(with some level of confidence) that the problem has been corrected. When parts approach or
exceed their predicted design life, it may be possible to extend their predicied life by
constructing a Weibull for evaluation even though no failures have occurred. A method calied
Weibayes analysis has been developed for this purpose and is presented in Chapter 4. Methods
to design experiments to substantiate new designs using Weibayes theory are presented in
Chapter 5 — Substantiation and Reliability Testing.

1.14 SMALL FAILURE SAMPLE WEIBULLS

Flight satety considerations may require using samples as small as two or three umts
Weibull analysis, like any statistical analysis, is less precise with mall samples. To evaluate
these small-sample problems, extensive Monte Carlo and analytical studies have beei: madeand =
will be presented in Appendix F. In general, small sample estimates of g tend to be too high (or
steep) and the characteristic life, n, tends to be low. See Figure 1.7.

1.15 CHANGING WEIBULLS

After the initial Weibull plot is made, later plots will be based on larger failure samples
and more time on successful units. Each plot will be slightly different, but gradually the Weibull
purameters will stabilize as the data sample increases. The important inferences about B.1 life
and the risk predictions are that they should not change significantly with a moderate size
sample.

}“Unified Field (Failure) Theory-Demise of the Bathtub Cuyrve”, Kam LiWong, 1981 Proceedings Annual Reliability
and Maintainability Symposium.
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u 1.16 ESTABLISHING THE WEIBULL LINE

The standard approach for constructing Weibull plots is to plot the time-to-failure data on
__"" Weibull probability graphs using median rank plotting positions as described in Chapter 2. A
) straight line is then fit to the data to obtain estimates of 8 and ». This approach has some
deficiencies as noted above for small samples t . is simple and graphical. Maximum likelihood
> estimates may be more accurate, but require c..aplex compu‘er routines. The advantages and
disadvantages of these methods are discussed in Appendices C and D.

~ .
:1 117 SUMMARY

- o The authors’ intent is that the material in this handbook will provide an understanding of
| this valuable tool for aerospace engineers in industry and Government. Comtmctwe comments
g would be appreciated for future revisions of this handbook.
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CHAPTER 2

PERFORMING A WEIBULL ANALYSIS

21 FOREWORD

This section describes how to construct Weibull paper and how to plot the data. Since
interpretation of the data is the .nost important part of doing an analysis, an extensive
discussion is given on how to interpret a Weibull plot. Examples are used to illustrate

_interpretation problems. : '

The first question to be answered is whether or not the data can be described by a Weibull
distribution. If the data plots on a straight line on Weibull paper, the data can be approximated
by a Weibull distribution.

22 WEIBULL PAPER AND ITS CONSTRUCTION
The Weibull distribution may be defined mathematically as follows:

F(t) -] - e'—((t"..)'/q"

where:
F(t) =  fraction failing
t = failure time
t, =  starting point or origin of the distribution
) = ' characteristic life or scale parameter
I/} =  slope or shape parameter '
e =  exponential.

F(t) thus defines the cumulative fraction of a group of parts which will fail by a time t.
‘T'herefore, the fraction of parts which have not failed up to timme t is 1 — F(t). This is often
called reliability at time t and is denoted by R(t). By rearranging the distribution function, the
following can be noted: :

1 - F@v) _.e—m-t..mr'

lett, = O P

then

1 -~ F(t) = e - we'
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Y=BX+A

’l'he expression Y=BX+ Ais the famnlxar equatlon for a ma:ghthm. By choosmg !Zn tas
X, the scale on the absclssa, and ; : S

tn n (T-:W)

as y, the scale on the ordmate, the cumulatwe Weibull dlstnbutlon can be reprmted as a

“straight line. As noted in Tables 2 1, 2. 2 and F:gure 2 1, Wetbull papercan be: canstructed as

follows:

TABLE 2.1. CONQTRUCTION OF ORDINATE (Y) ‘

- . bibl—l—- ‘, »..’CdSVllln-
F@) 1~ F) Min Col 2 Value (—6.91)
0.001 . -691 Lo . 0 units
oot =480 SRR T S
01 L =225 T AR
09 . . 083 U e
0.999 198 s

TABLE 2. 2 CONSTRUCTION
3 OF ABSCISSA (t)

1
1
|

. \_,"., o

A .
Voo

=

o 8553&6»—? :

e

0 units S
060

110

139

1.61

2.30

2n

3.00

100 461
1000 6.91
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If the units used are common for the abscissa and the ordmate (i.e., inches to inches or
centimeters to centimeters), the paper will have a one-to-one relatmnstnp for. estabimhmg the
slope of the Weibull. (The Weibull parameter /f is established by simply measuring the-slope of
the line on Weibull paper.) Of course, the scales can be made in any re!anomhip ‘That is 2-*-1,

10-to-1, 10-10-1; or any other combination to hest depict the data. Throughout this handbook

data has been plotted on 1-to-1 paper wherever possible. However, the' slopes will be displayed
on the charts. Sample Weibull paper has been included in Appendlx-» (At first glance, this
paper may appear to be common log or log-log paper. Looks are deceiving because it is not and
should not be used as such; nor can common log paper be used as Welbull pnper )

23 FAILURE DATA ANALYSIS — EXAMPLE.

During the deveiopment, testing, and field operation of gas : e
sometimes fail. If the failure does not affect the performance of the aires will go unnoticed
until the engine is removed and inspected. This was the case for the’ eomptessorkmlet airseal
rivets in the following example. The flare part of the rivet was found. mlssmg from one or more
of the rivets during inspection. :

A program was put into operatlon to replace the nvets wnh nvet.e of ,’ .new’ des:gn A
fatigue comparison was to be used to verify the improvement in the new rivet. A baseline using

" the old rivets wae est,abhshed by &an acce.erated laboratory test.. The results are presented in

Table 2.3.

TABLE 2.3. BASELINE

Rivet Serial ‘Failure Time

Number (S/N) (min) : . Remarg
. ] 80 . Failure L
2 86 - Failure ’ s
3 100 - Rivet flare loosened without ﬁ-. L
4 30 Failure S
5 49 = Fiilure
8 @8 -‘Rumﬂmloo-enedwithmthﬂm
7 10~ Lug failed at rivet atuehmnt :
8 - .

82 Failure

Since rivet numbers 3, 6, and 7 were considered nonre;)reaenteﬁve faihms. these data will

- be ignored for the first-analysis; That leaves five data points. The first step in establishing a

Weibull plot is to order the data from low time to high time failure. This facilitates establishing
the plottiii positions or: the time axis. It is"also needed to establish the correspondmg ordinate

- F(t) values. Each failure in a group of tested units will have a certain percentage of the total

population feiling before it. These true values are seldom known. Studies! have been made as to
how best to account for this inaccuracy, especially with small samples. However, most of these

studies are limited, and more detailed discussion is beyond the scope of this handbook. It has
been the convention at P&WA to nse “Median Ranks” for estabhshmg F(t) plottmg posmons,

and tables can be found in Appendix B.

With five failures, the column in Appendix B headed with sainple;reiielféf'is .used. The
resulting coordinates for plotting the Weikull are shown in Table 2.4 and plotted in Figure 2.2.
One additional item should be noted. Points with the same time should be plotted at that time

‘at separate median rank values.

VKapur and Lamberson, Reliability in Engineering Design, Wiley, pp 297-303.
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TABLE 24. WEIBULL COORDINATES

Failure
Order Time Median
Number S/IN  (Min) Rank
] 0 129
2 5 9 313
3 8 82 500
4 1 90 68.6
5 2 96 87.0

A line is drawn through the data points. Formal methods of rank regression and maximum
likelihood for establishing the line are discussed in Appendices C and D respectively. The slope
of the line is measured by taking the ratio of rise over run. Select a starting point and measure
one inch in the horizontal direction (run). Then, measure vertically (rise), until the line is
intersected. In Figure 2.2, the rise is two inches. Therefore, the slope represented by Greek
symbol g, () = rise/run = 2/1 = 2. One needs two parameters to describe a Weibull distribution
when discussing or reproducing the curve. The first is 8, and the other is the characteristic life
eta (denoted hy n). Eta occurs at the 63.2 percentile of the distribution and is indicated on most
Weibull paper. In Figure 2.2, the 63.2 percentile crosses the line at 80 mmutes. therefore. the

characteristic life n = 80 min.

The unique feature of the characteristic life is that it occurs at the 63.2°.. point regardless
of the Weibull distribution (i.e., slope). By examining the Weibull equation it will become clear

why this is true. When time, t, is equal to 7 it does not matter what g i ns, F(t) is always 63.2%:

P =1 - et
=1 --e'"’,whent=q
g =1 - 0368 ‘
Fit) = 0,632 regardless of the value of g

24 SUSPENDLED TEST ITEMS - NONFAILURES

In the example in Section 2.3, some rivets failed by causes other than the failure mode of
interest. A rivet that failed by a different mode cannot be plotted on the same Weibull chart in
the same manner as a rivet which fractured because the rivets do not belorg to the same failure
distribution. These data points are referred to as suspended or censored points. There are
several definitions! of suspensions, but for Weibull analysis, they are always treated the same
way. l\'he,\ ca.anot be ignored when establishing the Weibull, The argument for including them
in the analys’s is that if their failure had occurred in the same fashion as other failures, the rank
order of the »ther failures would have been influenced. Therefore, something needs to be done to .
accoun& for che potential influence of these points. To illustrate the adjustment of the rank
order numbers for the mfluence of these suspended items, the rivet test results will be used

again.

"Typel: Te terminsted aiter a fixed time has elnpsed;
Type Il: Test terminated after a set number of failures have cocurred.
Type I1l: Test terminated for a cause other than the one of interest.

18




.

' o,
[ ]

32

,.

- g
R
LA

-
L4

i A
i "a"‘v’{

AT

,,
A
el 10

GOk
A

A
":_ &

wt?

i;‘.,‘,,

L]
[y
s

CUMULATIVE PERCENT OCCURRED

¥

RAAN

" .
-t

=3 T T T T ITIII
o WEIBULL DISTRIBUTION

18 =2.0 :

v =8
= SHMPLE SIZE = 5
» FRILLRES = 5 ;
® T T TTTIT ;
We—t———q = CHARACTERISTIC LIFE - y T 1
%32— ————— e e e S e b B 4 ;-———_t:‘_n__l__.i o eaanten N o 1= o |t
"1 IN=Y

P, .
et
o

—
ZN

8

1 .
\’:—---»—--‘--,----
V\ ’

3
£

w
-

TOTAL OPERATING TIME (MIN)
FD 272263

Fisure 2.2, Rivet Failures

19

1. 2. 3. 4, S, 6.7.0.9.10. 2. 3. 4, S, 8.7.8.9.100. 2.. 3. 4. S.6. +8.9.1000.

[ R RN




R

A X XA

The general formula for adjusting the rank position, considering_ all possible ways the
suspended item may have failed and potentially influenced the results, is given by the following
equation:

WK,

. (N + 1) — (previvus adjusted rank) o
Rank Increment = 7 + (number of items beyond present suspended item) (2.2)

o

X XX

(A

wherc N is the total number of rivets tested regardless of whether it failed, was suspended
(Type I or Type 11), or suspended by the wrong failure mode (Type 111).

Applying this equation to the rivet test data, the values in Table 2.5 are ohtained.

TABLE 2.5, ADJUSTED RANK

Rivet S/N Order Time (minutes) Adjusted Rank

7 1 10 suspension -—
4 2 30 failure 1.125
6 3 45 suspension -—
5 4 49 failure . 2.438
8 5 82 failure 3.751.
1 ] 90 failure 5.064
2 7 96 failure 6.377
3 8 100 suspension —

The adjusted ranks were calculated in the following manner:

e Rivet No. 7 is a suspension; therefore, it does not need a rank value because
it will not be plotted on the Weibull chart.

Rank Increment for Rivet No. 4 = —(-8—}—_}_—)7——0- - 1,126

where:
8 is the total number of rivets tested whether they failed or not

0 is the previous adjusted rank (in this case there was none)

7 is the total number of items beyond the first suspension starting the count
with the first failure as illustrated below:

Rivet Time Items Beyond Suspension

7 10 suspension

4 30 failure 1 Starting here and counting forward
6 45 suspension 2

5 49 failure 3

8 82 failure 4

1 90 failure 5

2 96 failure 6

3 100 suspension 7

2 Johnson, 1eonard G. (1959). The Statistical Treatment of Fatigue Experiments. Research Laboratories, General
Motors Corporation, pp. 44-50.
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Therefore, the adjusted rank is:
Adjusted Rank for Rivet No.4 01 1,126 1125
¢ Rivet No. 6 is 2 suspension and receives no rank value.

* Rivet No. 5 ia a failure and the formula has to be emploved agam wldenufy
.. : the new rank increment to use between fmlures :

anl, _8+1)-1125 _
Rank Increment TTE 1.313

where
1.125 is the previous adjusted rank

5 is the number of items beyond the last suspensnon startmg
with the tailure following that suspension.

Rivet Time Items Beycnd Suspension
7 10 suspension
4 40 failure
6 45 suspension
5 49 failure 1 Starting here and counting forward
8 82 failure 2 ' . :
1 90 failure 3
2 96 failure 4
3 100 suspension 5

The adjuated rank, therefore, is the previous adjusted rank plus the new rank:
increment.

Adjusted Rank No. 5 = 1.125 + 1.313 = 2.438

3 ¢ Rivets No. 5, Nc. 8, No. 1 and 2 are failures without any additional
\,,;f ‘ ‘ suspensions between them and the previous failures. Therefore, no new rank

! increment needs to be calculated. The last value calculated (1.313) is still
- valid. Therefore, the adjusted ranks for these rivets are: -

o Adjusted Rank No. 8 = 2.438 + 1.313 = 3.751

¢ . Adjusted Rank No. 1 = 3.751 + 1.313 = 5.064
» Adjusted Rank No. 2 = 5.064 + 1.313 = 6.377.
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With these adjusted ranks, the median ranks can be established. The sample size to be
used when entering the median rank table would be 8. While interpolation could te used for
determining the appropriate median rank, a good approximation is provided by Benard's

formyla® :
Pow = ﬁ% X 100 2.4)
where N = sample size | ' . V
i = adjusted rank value

Use of this formula is illustrated in Table 2.6.

(1125 = 0.3) x 100 _ g oo
= WA ¢

Posw = B+ 04
Po.m - (2.438 ;2.-(‘))4! 100 « - 25-45',"

etc.

TABLE 26. MEDIAN RANK

Adjusted Rank  Median

Order No. Rank
1.128 8.82%
2.438 25.45%
3.751 41.08%
5.084 56.711%
6.377 72.35%

Using the ealculated median ranks and the failure times, Figure 2.3 is derived. The slope of
the line, g - 2.0, ix the same as the earlier Weibull. This will generally be true if the suspensions
are randomly dispersed with the data. Note, however, the effect on the characteristic life, 5. It
went from 80 minutes without suspensions to 100 minutes with suspensions. The analysis
resulting in 100 minutes is the correct method,

7777725  WEIBULL CURVE INTERPRETATION

Weibull curves may rcveal clues about the failure mechanism, since different slopes imply
different failure mechanisms.

If the slope is less than 1.0, reliability increases as the unit ages. This is often referred to as
an infant mortality failure mode. Quality control and assembly problems may produce infant
mortality failures. For instance, some gas turbine failures having slopes less than 1.0 are:

Improper augmentor liner repair — quality

Improper installation of temperature probes — misassembly

Fuel pump leaks due to installation problems — misassembly
Overhaul-related failures of various components — quality/misassembly
Electronic control failures — quality.

sangs

! Kepur and Lamberson, (1977). Relisbility in Encmecnng Design. John Wiley and Sons, Inc., op. 300.
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The exponential distribution is a special case of the Weibull distribution when ;3 1.0, The
exponentul at times reflects original design deficiencies, insutticient redundancy, unexpected
faitures due to ingestion, or even product misuse. This would result in a constant failure rate
condition. Some examples of Weibulls with slopes of 1 or near 1 are

a, Bearing cage failure

h.  "Temperature probe tilure

¢.  Fuel control solenoid tailure

d.  Fueloil cooler failure

e.  Electronic engine control failure.

Slopes greater than | represent wearout modes. For shallow slopes like 1.8 to 3.0 there is
more scatter in the failure diata and therefore failure predictions will cover long timespans
reflecting this uncertainty. As the slopes get steeper, failure times become more predictable.
Some examples of Weibulls with slopes greater than 1 are:

a.  ‘T'urbine vane wearout

b.  Augmentor liner burnthrough
¢.  Temperature probe hoss fatigue
d.  Gearbox housing cracks

¢. - Augmentor flameholder eracks
f. Oil tube chate through.

A slope, g, of 3.4 would approximate the familiar bell-shaped or normal curve, as
indicated in Figure 2.4,

2.6 DATA INCONSISTENCIEG AND MULTIMODE FAILURES

There are other subtleties in Weibull analysis which might signal problems. Examples are
given that illustrate the following:

a. Failures are mostly low-time parts

b, Serial numbers of failed parts are close together ,

¢, ‘the data has a “dogleg™ bend or cusp when plotted on Weibull paper
d  The data has a gradual convex or concave hend on Weibull paper.

2.7 LOW-TIME FAILURES

Figure 2.5 is an example of low-time part failures on main oil j.umps. Gas turbine engines
are tested before being shipned to the customer, and since there were over 1000 of these engines
in the field with no problems, what was going wrong? Upon examining the failed oil pumps it
was found that they contained oversized parts. Somethirg had changed in the manufacturing
process which ereated this problem. The oversized parts caused an interference with the gears in
the pump which resulted in failure. This was traced to a machining operation and corrected.

The point here is that low-time failures often indicate wearout (abnormal in this case) by
having a slope greater than one when plotted. Low-time failures provide a clue to a production
or assembly process change, especially when there are many successful high-time units in the
field.
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Figure 2.5. Main Oil Pumps
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28 CLOSE SERIAL NUMBERS

The same reasoning cian be extended to other peculiar tailure groupings. For example, if
(ailures occur in the middle of the time experience, that is, low-time units have no failures, mid-
time units have fadures, and high-time units have no failures, then a batch problem is
suspected. Something may have changed in the manufacturing process for a short period of time
and then changed back. The closeness of the serial numbers of the par!s are a very definite clue
to this type of problem.

Figure 2.6 is a prime example of a process change which happenad midstream in
production. Bearings were failing in the augmenter pump. The failures had occurred in the 260
to 400 hour time frame. At least 650 units had more time than the highest time failure. These
failures were traced to a process chaxge that was mcnrmrated as a cost reduction for
manuiacturing the hearing cages.

29 DOGLEG BEND

A Weibull plot containing a “dogleg bend” is a clue to the potential of multiple failure
modes (see Figure 2.7). This was the case for a compressor start bleed system binding problem.
Upon examination of the data, 10 out of 19 failures had occurred at one base. It was concluded
that this base’s location was contributing to the problem. 'I‘he bac.e was luecated on the ocean and
the salt air was the contributing factor.

The data were broken apart and the two resultant Weibull charts are presented in Figures
2.8 and 2.9. Note that the fleet Weibull presented in Figure 2.8 is less than one, 8 = 0.837. This
could be considered an infant mortality problem, while the ocean base Weibull, Figure 2.9, is
more of a wearout failure mechanism with g = 5.223. This problem was related to lack of
maintenance. More attention was given to this area and the problem was resolved.

The failures do not have to be associated with an environmental factor to cause a dogleg
Weibull. In fact, they are usually associated with more than one failure mode. For instance, fuel
pump failures could be due to bearings, housing cracks, leaks, etc. If these different failure
modes are plotted on one Weibull plot, several dogleg bends will resuit. In cases where this

""occurs without prior knowledge, a close examination of the failures will have to take place for

potential separation into different failure modes.
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210 CURVED WEIBULLS

In Section 2.1, the cumulative distribution function F(1) is prosented for the Weibull. Tt

was illustrated as:

He Mt

Fit) -1 ~ e

where:

t = failure time .
t, = starting point or origin of the distribution.

In discussions so far, t, was assumed to be zero. When data are plotted on Weibulil paper it
quickly becomes obvious |f the origin of time is not zero. The data will appear curved as
illustrated in Figure 2.10 if the zero time origin is not true.

There are other reasons for poor fit (i.e., the data do not form a straight line on Weibull
paper). For example, another distribution like a Normal, log Normal, etc. may better describe
the data. If this is true, the distribution which best describes the data should be used.

But the data displayed in Figure 2.10 was from engine controls and there was no reason to -
suspect that the Weibull distribution could not be used to analyze it. There are a couple of ways
to determine what adjustment is needed to make the data appear straight. First, there is an
analytical method that can be used to establish t . The equation is: ,

(t, tz)(tz"t)

Where t, is the first (ailure time, t, is the time corresponding to the linear halfway distance
on the vertical axis between the first and last failure, and t; is the last failure time. This is
illustrated in Figure 2.11. The values for t, t,, and t, are:

t; = 16.9 hours ~ first failure

S t;,= 42.0hours~halfwaryrfailure - - \

ty= 389.0 hours ~ iast failure

t o= 420 — (389.0 — 42.0) (42.0 — 16.9)
" . (389.0 — 42.0)=(42.0 — 16.9)

t,~ 420-271

(1]

t.= 14.9 hours.

[+
If ¢ is positive, it implies that the origin staris after zero; if negative, before zero. In other

words, there is a time, in this ¢+ approximately 15.0 hours, in which the control would not he
expected to fail.
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Figure 2.11.

Plotting t, Correction
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Upon questioning the vendor, this wax not found to be true. The vendor was actually
testing the units for about 15 hours prior to shipment. and discarding or repairing failed units.
This made the distribution appe.r to be truncated at 15 hours with a zero probability of failure -
hefore that time. Subtracting 15 hours from each of the failure times will adjust the curve for the
absence of this time. The resultant curve is plotted in Figure 2.12.

The corrected curve provides a more accurate prediction of the probability. of failure.
However, to determine distribution percentiles like the B.1 life or D1 life, one has to add the L5
. hours to the time read from the Weibull plot.

For example, to determine the time to failure for the 1/100 unit _(dften referred to as the B!
life), one would read the 1 percentage point of 8 hours from Figure 2.12 and then add 15 hours to
it. That is, the B1 life is estimated to be 23 hours.

The second way to correct a curved Weibull uses a simplistic approach. When the curved

Weibull hecomes fairly perpendicular to the horizontal scale, extend the curved Weibull

vertically through the time scale. Where it intersects, simply read the curve aud subtract or add

the time. T'rying this technique on Figure 2.11 confirms that 15 hours is a good estimate. By eye,

: this curve would be considered convex; therefore, a subtraction of time would be required. Data
: plotted on Weihull paper that curves in the other direction (concave) would require adding time
' to each point. The amount of time to be added wculd be found with either of the above

! procedures.

211 PROSBLEMS

Problem 2-1:

Fatigue specimens were put on test. They were all tested to fmlure and the failure times were
150, 85, 250, 240, 135, 200, 240, 150, 20, and 190 hours. :

a. Construct a Weibull and determine its slope, £, and characteristic life, 4
. b. Would you have expected the derived slope for fatigue specimens?
e. If you were quoting the B, , life, what would the value be?

AR {10
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A

Problem 2-2:

There were {ive failures of a part in service. The information on these parts is T
\__v [
Serial Number  Time (hours)  Comment
row 831 9.0 Failure ;
3 812 6.0 Failure .
833 14.6 Suspension ‘
“ 814 1.1 Failure ‘
835 20.0 Failure N
836 7.0 Suspension i
: 817 65.0 Failure e
i 838 8.0 Suspension - \ :
! : N
| a.  Construct a Weibull with suspensions included and determine its slope, g, \
and characteristic life, n. \
| i
! b.  What is the failure mode? S|
| ‘ S
c.  Are there other clues which n..y lead to an answer to the problem? A
i Problem 2-3: R \ S
: The following set of failure points will result in a curved Weibull: 90, 130, 165, 220, 275, N
: 370, 525, and 1200 hours. : 5
! ]
a.  What value is needed to straighten the Weibull? B
~h.  Will the value found in “a” be added or subtracted from the failure values?
Solutions to these problems are in Appendix .J.
e
‘ ! \*’.\:;
: : !
v
J /
7
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CHAPTER 3

WEIBULL RISK AND FORECAST ANALYSIS

3.1 'FOREWORD

One of the major uses of Weibull analvsis is to predict the number of occarrences of a
failure mode as a function of time. This projection is important because it gives management a
clear view of the potential magnitude of a problem. In addition, if this prediction is made for
different failure modes, management is able to set the priority ftor the solution of each problem.

In this chapter the use uf the Weibuil probability distribution function in predicting the
occurcences of a failure mode is explained. The additional input needed for risk analysis will he
covered, and several examples are presented to explain further the techniques involved.

It should be emphasized that the forecast analysis is ouly as good as the failure data. The
data should be examined closely to ensure that they are from a single failure mode and will fit a
Weibull distributio~.

3.2 RISK ANALYSIS DEFINITION

A risk analysis calculates the number of incidents projected to occur over some future
period.

3.3 FORECASTING TECHNIQUES

The observed failures and the population of units that have not failed are used to obtain
the Weibull failure distribution, as discussed in Chapter 2. The following additional input is
needed for forecasting:

a)  Usage rate per uni* per month (or year, day, etc.)

b Introduction rate of new units (if they are subject to this same failure
mode) '

With this information a risk analysis can be produced. The techniques used to produce the
risk analvsis can vary from simple calculations to these involving Monte Carlo simulation.

Monte Carlo simulation is only required when complications arise in the risk analysis. These will
be explained in the following sections,

3.4 CALCULATING o'SK
Risk calculations are described in three sections:
¢ Present risk :
¢ Future risk when failed units are not fixed
e Future risk when failed units are fixed.

3.5 PRESENY RISK

The simplest case arises when there are no new units (no production) and no replacement
of failed units. If there is a population of N items and each has accumulated t hours or cycles,

o8




_the expected number of faiures from this population is the probability of failure by time t

multiplied by the number of units, N. Therefore, for a Weibull distribution this becomes

Expected number of failures F() - N
(e (t/n¥ ) N. ’ _ 1.1)

Equation 3.1 can be used immediately to calculate the following:

There are 25 units in a population: 5 units have accumulated 1000 hours of operational
time, 5 units have accumu'ated 2000 hours, 5 units have accumulated 3000 hours, 5 units have
accumulated 4000 heurs, and 5 units have accumulated 5000 hours. Assume that the population
is subject to a Weibull failure mude with g = 3.0 and » = 10000 hours. The question is, ‘Whai is
the cumulative expected number of failures from time 0 to now for this population?” Figure 3.1
is the Weibull failure distribution with the cumulative probability of failure by each time on the
units gs illustrated. Table 3.1 summarizes the calculations involved.

TABLE 3.1. PRESENT RISK

Number(N) Time (t)
of on Euch
Units Unit F(t) F@t) - N Example of Calculation:

Ft) =1-e W0

5 1000 0.001 0.005 F(1000) ='1- o "“‘*‘;"““'”'

5 2000 0.008 0.040 =1 ¢ "ON

'3 3000 0.027 0.135 ‘ =} ¢ "0t

5 4000 0.062 0.310 =1- 0999

5 - 5900 0.117 0.585 F(1000) = 0001

y Sum = 1.075

The value of F(t) can also be read directly from the Weibull Cumulative Probability Plot.
(See Figure 1.1)) : :

The cumulative expected number of failures in this case is 1.075.
3.6 FUTURE RISK WHEN FAILED UNITS ARE NOT FIXED

Given the same 25 units aL in Table 3.1, the expected number of failures over the next 12
months can be calculated. Assume that one of the 4000 hour units has just failed. Since it is
assumed that failed units will Art be replaced, it will be omitted from the population for the
calculation of future risk. \ ' '

Yearly usage of each unit will he 300 hours. The future risk will be composed of the risk of
the 1000-hour units failing by 1300 hours, plus the risk of the 2000 hcur units failing by 2300
hours, plus the risk of the 3000 hour units failing by 3300 hours, etr.

In general, ii a unit has accumulated t hours to date without failure, ana will accumulate u
additional hours in a future period, then that unit’s contribution to the total future risk is:

F(t+u) — F(t)
T 1-F@U 3.2)
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where F(1) 1 ¢ W55 the probability of the unit failing in the first ¢ hours of service, assuming

it follows a Weibull failure distribution. 1 F@1) is much less than 10, equation (3.2) is’

approximately equal to

Feeta) - K1) -
)

Table 3.2 summarizes the future risk calculations for the population of 25 units, with one failed

unit at 4000 hours,

Hence the expected number of failures from this population over the next 12 months is:

Failures = 5(0.0012) + 5(0.0041) + 5(0.0089) + 4(().0154) + 5(0.0236) = 0.2506

3.7 FUTURE RISK WHEN FAILED UNITS ARE REPAIRED

The calculation of the number of failures that will occur over some future time interval
when the failed units will be repaired and returned to service involves the same concepts as
when units are not fixed. When the prot. bility of failure of a unit over the time interval in
question is small (on the order of 0.5 or less), the techniques of Paragraph 3.6 can be applied. In
cases where the probability of failure is greater than about 0.5, the chance of more than one
failure over the same time interval becomes significant. Then, the expected number of failures
may be caleulated using published tables!, complex mathematical formulas, or Monte Carlo

simulation methods,

3.8 THE USE OF SIMULATION IN RISK ANALYSIS ' Py

The caleulation of risk is eany for the simple case of a population with no i;\spections, no
production added. and no retrofits, Of course, even simple risk analysis can become complicated
by the volume of caleulations involved. In this case, a computer program automating the

caleulations is useful.

In some iastances, a part’s service life will depend on decisions to be made in the future
which will be dependent on a Weibull distribution. Since only the probability of this outcome
may be known, a powerful tool known as Monte Carlo simulation is useful. Monte Carlo
simulation enabler an analyst to build a computer model of the decision plan as it affects a

Ciart's service life, It may include scheduled part inspections, random events such as the

extenrive wear of a particular part and its replacement, as well as the addition of new units into
the field.

The effect of scheduled inspection on risk is straightforward. If a part is inspected and
removed from service, it no longer contributes to the fleet’s risk. If it continues in service, it
continues to contribute to the fleet’s future risk.

Ax an example, the methodology used in a Monte Carlo simulation is described for the case
of three failure modes and a scheduled inspection. In this case, the number of failures occurring
in each mode before the scheduled inspection is desired. However, the occurrence of any one
fuilure mode will not affect any other mode.

! WHITE, J. 8. (1964), “Weibull Renewal Analysia,” in Proceedings of the Aerospace Retiability and Maintainability

Conference, Washington, D. C., 29 Juns — [ July 1964, New York: Society of Automotive Engineers, 639-657.
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TABLE 3.2

FUTURE RISK

Current Time on .
Number Time Each Each Unit'’s
of on Each Unit Risk
Units Unit at Year's End F(t+u)-F(t)
(N) (t) (hr) (ttu) (hr) F(t+u) Ft) -F(t
5 1000 1300 0.0022 0.0010 . 0.0012
5 2000 2300 0.0121 0.0080 - 0.0041
5 3000 3300 00353 ' 0.0266 0.0089
4 4000 4300 0.0764 _ 0.0620 0.0154
5 5000 - 5300 © 0.1383 0.1175 0.0236

" The following procedure is performed for each ‘unit in the population. Using random

numbers that are evenly (uniformly) distributed between 0 and 1 and the three Weibull failure
distributions, generate a time-to-failure for each failure mode. See Figure 3.2. The tollowmg
equation is used to calculate the time to failure:

AT

time to failure = 5 [ Qn( = rand})m nombBer )]W (3.4)
Scheduled
Inspection
} | | | |
o v ] i I
‘Mode 2 Mode 1 Mode 3
Time to Failure Time to Fallure Time to Failure
FD 250048
Figure 3.2. Simulation Logic — First Pass

Advance the simulator to the first event; if this event is a failure, note the cause, and

regenerate a new time to failure for this mode. See Figure 3.3.

s

Scheduled
inspection

'

A
|

Y

0
Mode 1 Mode 2 Mode 3
e Time to Failure Time to  Time to
Failure Failure
0
FD 259949
Figure 3.3. Simulation Logic — Second Pass
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Continue this process until the scheduled inspeciion is reached. The number of ailures of
each mode is recorded and the simulation is repeated. After many repetitions of this process,
each using a different set of random numbers, the results are averaged to give the expected risk.

A more detailed example utilizing these principles is given in Section 3.12.

3.9 CASE STUDIES

Several case studies in the use of the ideas developed in the previous sections are now
presented. The first two examples, Sections 3.10 and 3.11, illustrate the direct calculation of risk
without simulation. The case study in Section 3.12 uses Monte Carlo simulation.

3.10 CASE STUDY 1: BEARING CAGE FRACTURE

Bearing cage fracture times of 230, 334, 423, 990, 1009, and 1510 hours were observed. The
population of bearings within which the failures occurred is shown in Figure 3.4. A Weibull
analysis similar to those described in Chapter 2 was followed to obtain the Weibull failure
distribution for bearing cage fracture (Figure 3.5). From this distribution plot we can see that
the B, life (time at which 10, of the population will have failed) is approximately 2430 heurs.
This was much less than the B,y design life of 8000 hours, so a redesign was undertaken
immediately. Additionally, management wanted to know how many failures would be observed
before this redesign entered the field.

The risk questions and solutions are:

1. How \many failures could be expected by the time uniis had reached 1000
hours? . :

Calculate the number of units that will fail by 1000 hours, assuming failed
units are not replaced. Enter the x-axis of the Weibull plot (Figure 3.5) and
- read at 1000 hours that approximately 1.3% of the population is expected
to fail. That is, after ihe entire population of 1703 bearings reach 1000
hours each, 1703 (0.013) = 22 bearings would be expected to have failed.

2. How many failures could be expected in the next year?

" Utilizing the methodology explained in Section 3.6 and applying Equation— -
3.2 with a monthly utilization of 25 hours or 12(25) = 300 hours in one year
results in the calculations shown in Table 3.3. Thus about 12 more failures
can be expected in the next 12 months.

3. How many failures could be expecied when 4000 hours had been
accumulated on each bearing if we instituted a 1000 hour inspection? A
2000 hour inspection? No inspection?

(3

From the answer to Question 1, the probability of a bearing failure by 1000
hours is 0.013. Therefore, if it is assumed that each 1000 hour inspection
makes the bearing “good as new” relative to cage fracture, there is a total
expectation of failure for each bearing by 4000 hours of approximately
0.013 + 0.013 + 0.013 + 0.013 = 0.052. So, if all 1703 bearings ran to 4000
hours with 1000 hour inspections, 0.052(1703)= 89 failures can be
expected.
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On the other hand, if there is a 2000 hour inspection, the probability of
failure by 2000 hours is 0.065. Using the same approach as in the previous
paragraph, by 4000 hours about 0.065 + .065 = 0.13 failures would be
expected for each bearing. Therefore, the expected number of failures with
a 2000 hour inspection would be 0.13(1703)=221.

Now suppose no inspections were made until 4000 hours, at which time the
bearing will be retired. Again utilizing the Weibull in Figure 3.5, the
probability of failure by 4000 hours is 0.28. Therefore, by the time all 1703
of the bearings have been retired, 0.28(1703)=477 will have failed.

3.11 CASE STUDY 2: BLEED SYSTEM FAILURES

Nineteen bleed system failures have been noted and the times and geographical locations
of these failures are listed in Table 3.4. The high incidence at air base D prompted a risk
analysis to determine the cumulative number of incidents to be expected over the next year at

A Weibull analysis of the fleet failures excluding air base D (Figure 3.6), indicates a
decreasing failure rate phenomenon, that is, § <1.0. But a Weibull analysis of the failures at air
base DD (Figure 3.7) indicates a rapid wearout characteristic. From comparison of the plots it
seems that the bases are significantly different. It is shown in Chapter 7 that the two failure
distributions may be proven statistically to be significantly different.

Since the probability of failure, excluding air hase D, was quite low by 4000 hours (the life

-limit of the part) for the fleet, a risk analysis for air base D only was requested.

‘The risk questions are:

1) What is the expected number of incidents in the next year and a half with
a usage of 25 hours per month?

Using the histogram of the times on each bleed system at air base D
(Figure 3.8), set up the calculation as before (Table 3.5). Over the next
18 months, 56 failures can be expected using a 25 hours per month
utilization rate.

2) If the usage drops to 20 hours per month immediately, how many fewer
failures can be expected?

Changing the utilization rate to 20 hours per month wiil change the
.calculation of expected risk. The new risk over the next 18 munths is given
in Table 3.6. About 42 failures, or ahout 13 fewer than for a utilization rate
of 25 hours per month, are predicted.
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TABLE 31.3. BEARING RISK AFTER 12 MONTHS

Number Current Time on Each Unit's
of Time on Each Unit Risk Total Risk
Units Each Unit at Year's End: F(t+u)-F(t) Fe+u)-Fe)
(N) ® (t+u) F(t) F(t+u) TTFe . T LFa
283 50 350 0.0000 0.0012 0.0012 0.3480
148 150 450 0.0002 - 0.0022 0.0020 . 02963
1256 250 §50 0.0006 0.0034 0.0029 0.3607
112 350 650 0.0012 0.0051 0.0038 0.4301
107 450 750 0.0022 00070 0.0049 0.5193
99 550 850 0.0034 0.0093 00059 0.5859
110 650 950 0.0051 0.0121 0.0070 0.7731
114 750 1050 0.0070 0.0151 0.0082 0.9325
119 850 1150 0.0093 0.0186 0.0094 1.1148
128 950 1250 00121 - 0.0225 0.0106 1.3558
124 1050 1350 0.0151 " 0.0268 0.0118 1.4691
93 1150 1450 0.0188 0.0315 0.0131 . 1.2214
47 1250 1550 0.0225 0.03668 0.0144 06790
41 1350 1650 0.0268 0.0422 0.0158 0.6473
27 © 1450 1750 0.0315 0.0481 0.0172 0.4631
12 1550 © 1850 0.0366 0.0545 0.0185 0.2225
6 1650 1950 0.0422 0.0613 0.0200 0.1197
0 1750 20650 0.0481 0.0685 0.0214 0.000
1 1850 2150 0.0545 0.0761 0.0228 0.0228
] 1950 2250 0.0613 0.0841 0.0243 0.0000
2 2050 2350 0.0685 0.0925 0.0258 0.0516
Sum = 11.613

TABLE 34. BLEED SYSTEM
FAILURES BY
AIR BASE

'Air Base Hours at Failure

183
872
1568
212
1198
884
1428
808
1251
1249
1405
708
1082
884
11056
828
1013
64
32
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3.6. Bleed System Failure Distribution Excluding Air Base D
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TABLE 3.5. BLEED SYSTEM RISK AFTER 18 MONTHS

( Ulviliz:ll.inn‘ Rate

25 Hours Per Month)

Number Current Time on Each Unit's
of Time on Each Unit Risk Total Risk
Units Each Unit in I8 Months F(e+u)-Fir)  Flt+u)-F(t) N
(N) () (tiu) Fu) F(t+u) “T-F) TFrg
0 50 500 0.0000 0.0007 0.0007 0.0000
0 160 600 0.0600 0.0018 0.0018 0.0000
2 250 ‘700 0.0000 0.0041 0.0041 0.0081
1] 350 800 0.0001 0.0082 .0.0081 0.0000
(1] 450 900 0.0004 . 0.015? 0.0147 0.0000
2 £50 1000 0.0012 0.0260 0.0249 0.0497
2 650 1100 0.0028 0.0424 0.0397 0.0794
10 750 1200 0.0058 0.0659 0.0605 0.6046
26 850 1300 0.0112 0.0984 0.0882 2.2939
27 950 1400 0.0199 0.1415 0.1241 3.3500
22 1050 1500 0.0334 0.1965 0.1688 3.7130
b 1150 1600 0.0532 0.2640 0.2227 5.3445
24 1250 1700 0.0810 0.3434 0.2856 6.6540
11 1350 1800 0.1186 0.4328 0.3565 3.9218
11 1450 1900 0.1675 0.5286 0.4338' 4.7719
20 1550 2000 0.2287 0.6259 0.5149 10.2990
8 1650 2100 0.3023 0.7188 0.5969 4.7752
4 1750 2200 0.387". 0.8016 0.6763 2.7052
2 . 1850 2300 0.4802 0.8700 0.7499 1.4998
3 1950 2400 0.5774 0.9218 0.8149 2.4446
3 2050 2500 0.6732 0.9573 0.8693 2,6080
1 2150 2600 0.7618 0.9792 0.9125 0.9125
Sum = 56.2352
)
i
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TABLE 3.6. BLEED SYSTEM RISK AFTER 18 MONTHS

(Utilization Rate = 20 Hours Per Month)

Number Current Time on Each Unit's
of Time on Each Unit Risk Total Risk
Units  Each Unit in 18 Months F(t+u)-F(t) F(t+u)-F(t) N
(N) ) (t+u) F(t) F(t+u) T-F(__* T-F)
0 50 410 0.0000 0.0002 0.0002 0.0000
0 150 " 510 0.0000 0.0008 0.0008 0.0000
2 250 610 0.0000 0.0020 0.6020 0.0039
¢ 350 710 0.0001 0.0044 0.0043 0.0000
0 450 810 0.0004 0.0087 0.0083 0.0000
2 550 910 ’ 0.0012 0.0160 0.0148 0.0296
2 650 ) 1010 . 0.0028 0.0273 0.0246 0.0493
10 750 1110 0.0058 0.0444 0.0338 - - 03877
26 850 1210 0.0112 0.0688 0.0582 - 1.5136
277 950 1310 00199 0.1022 0.084) | 2.2676
22 1050 1410 - 0.0334 - 0.1465 0.1170 , " 25739
24 1150 1510 00532 . 0.2027 0.1580 3.7909
24 1250 " 1610 0.0810 0.2714 . 0.2072 49738
11 1350 1710 0.1186 - 0.3520 0.2648 29127
11 1450 1810 0.1675 0.4422 0.3300 3.6296
20 1550 - . 1910 0.2287 0.5334 0.4015 8.0301
8 1650 2010 0.3023 0.6355' 0.4775 3.8201
4 1750 2110 0.3871 0.7276 0.5556 2.2222
2 1850 2210 0.4802 0.80¢1 0.6328 1.2656
3 1950 2310 0.5774 * 0.8739 0.7064. 2.1192
3 2050 2410 0.6732 0.9260 0.7736 2.3208
1

2150 2510 - 0.7618 0.9660 0.8323 0.8323
- . Sum = 42.7432

3.12 CASE STUDY 3: SYSTEM RISK AMALYSIS UTILIZING A SIMULATION MODEL
Assume a jet engine has four mdependent failore modes

¢ Overtemperature
¢ Vane and Case cracking
* Oil Tube cracking
¢ Combustion chamber crac kmg

The failure distribution of each of these modes is illustrated in Figure 3.9. In addition,
there is a scheduled inspection at 1000 hours. At fail'ire or scheduled inspection the modes are

made “good-as-new.”

1)  How many failures can be expected in each mode over the next 2 years"
" (Assuming a usage rate of 25 hours/month)

2)- How will lengthemng the inspecticn interval to 1200 hours change this
risk?

52

TR o




IR

I T 1T TTITTT ]
. WEIBULL DISTRIBUTION 11 7
. / /

%ﬂ—--_.—- [y TOROUES RN (U K Iy O S _L— -----...JLL/——_ e e e foe o e L L
w. | VANE AND CASE CRACKING =\ [ } ,/
g=4571=2338.4 N [ )/
/ f

COMBUSTION / /
.j—.. CHAMBER CRACKING=\_
g = 4,03 7= 3149 ‘/

CUMULATIVE PERCENT OCCURRED
\
'\
(
=
r~
[ ]
s
2
&

108, . 3 4 E. k. '7-L-$ 1000, 2. 3.. 4. S, 6,7.8.9.10700. 2.

TOTAL OPERATING TIME (HR)

FD 271860

Figure 3.9. ‘ailﬁre Distribution Input to Simulation
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There is no easy solution to this problem without sinadation. A Monte Carlo simulation
based on these groundrules is illustrated in Figure 3.10,

T'o provide more detail, one engine starting with 0 hours, will be followed step by step to
the first scheduled inspection at 1000 hours,

Step 1.
Getierate random times to failure for each failure mode. First, using a table of random
numbers, (Reference 1), four random numbers converted to the O to 1 range are 0.007, 0.028,

0.517. and 0.603.

Using Equation 3.4:

.Fy = Overtemperature = 10,193 [Qn (———-———1 — })‘007 )]"“’“
= 951 hours
Fp= = Vane and case craclkmg = 2336 [Qn (_1—:':')‘(')73') ]Vm
i = 1,072 hours
F.=0i ino l = 1 11585
F; = Oil tube cracking | = 12,050 [Qn ( =051 )]
; = 10,180 hours
2
F, = Combustion chamber cracking = 3,149 [Qn (-—l-—-_—:m)]""““
3,088 hours
Steps 2 & 3

The minimum of the times-to-failure and inspection time is 951 hours; therefore, the
scheduled inspection was not reached.

Step 4

" This {ailure was an overtemperaturc (F)) and is recorded as occurring 951/(25 hours usage)
38 monthas in the future,

Gienerate another time to failure for F,, using the next random number, 0.442.

New F, = 10,193 [Qn (TZ'}(W)]'/M = 7,876 hours
+  95thours on F failure
8,827 hours

——————

AVNA

Ref. 1, A Million Random Digits With 100,000 Normal Deviates, The Free Press, Rand Corporation, 19565,
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Now, the minimum of (F}, Fy, Fy, Fy, 1000 hours) is 1000 hours, which is the scheduled
inspection. This process can be continued for as many inspection intervals as desired.

For engines with greater than zero hours initially, the Monte Carlo process must be
maodified. First, the time since last 1000-hour inspection is calculated and used as the engine’s
initial age (since engines are made “good as new” at each 1000-hour inspection). Then, note that
the first set of four random failure times must be greater than the engine’s initial age (since all
of the engines in the histogram are suspensions). If any are less, other random numbers are
drawn until all four failure times are greater than the initial age.

The above procedure is followed for each engme in the populatxon (Figure 3.11) and is

‘repeated several times so that an average risk can be calculated.

_ The simulation in Figure 3.10 was run, and the risk for the first 24 months is presented in
Table 3.7 for the 1000 hour inspection, and in Table 3.8 for the 1200 hour inspection. A plot
comparing the two risks is presented in Figure 3.12, Increasing the inspection interval to 1200
hours increases the expected number of failures from 25 to 34, a delta of 9, by the end of 1981.
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TABLE 3.7. SIMULATION OUTPUT FOR 1000 HOUR INSPECTION

Cumulative Incidents

Month EFH* Cum EFH* 0il Tube Vane Case Over/Temp Comb. Chamber
® & 5 & 2 & 0 lgﬂ) » ¢ 5 % 5 0800 .
Jan 29,225 29,225 0.00 0.00 _ 0.00 0.00
Feb 29,225 58,450 0.17 0.33 021 - 0.17
Mar 29,225 87,675 0.38 0.67 0.47 0.34
Apr 29,225 116,900 0.60 1.15 0.74 . . 0.58
May 29,225 146,125 0.78 1.47 095 - 074 . -
Jun 29,225 175,350 0.92 1.71 113 0.87
Jul 29,225 204,575 : 122 2.27 149 1.15
Aug 29,225 233,800 1.46 291 1.77 1.41
Sep 29,225 263,025 1.66 3.16 202 - 1.60
Oct 29,225 292,250 1.95 3.90 2.36 1.95
Nov 29,225 321,474 2.07 4.03 2.51 : 2.03
. Dec 29,225 350,699 2.38 4.90 2.87 2.46
® % & 8 0P 1981 LN BN BN BN IE R BN
Jan 29,225 379,924 2.66 . b5.55 3.19 277
Feb 29,225 409,149 2.77 5.83 3.32 291
Mar 29,225 438,374 2.87 6.13 34 3.05
Apr 29,225 . 467,599 3.07 ‘ 6.68 3.67 . 3.31
May 29,225 496,824 - - 3.28 7.33 391 3.62
Jun 29,225 526,049 3.37 _ 748 4.02 3.69
Jul 29225 555,274 364 8.26 4.33 : 4.08
Aug 29,225 584,499 3.70 8.45 4.40 4.15
Sep 29,225 © 613,724 3.76 8.59 447 4.21
Oct 29,225 642,949 3.80 8.59 447 421
Nov 29,225 672,174 4.16 9.40 . 495 482
Dec 29,226 701,399 444 9.96 T s29 4.90

*EFH = engine flight hours

e




TABLE 38. SIMULATION OUTPUT FOR 1200 HOUR INSPECTION

Cumulative Incidents

Munth EFH* Cum EFH* Oil Tube Vane Case Over{Temp Comb. Chamber
.0000000]9800010“000
Jan 29,225 29,225 0.00 0.00 0.00 0.00
Feb 29,225 58,450 0.17 0.53 0.21 0.24
Mar 29,225 87,675 0.40 1.28 047 0.58
Apr 29,225 116,900 0.69 2.44 0.79 1.08
May 29,225 146,125 0.91 3.21 1.05 1.43
Jun 29,225 175,350 1.21 4.02 1.40 1.81
Jul 29,225 204,575 1.40 - 4.86 - 1.62 2.17
Aug 29,225 233,800 1.57 5.25 1.82 2.36
Sep 29,225 263,025 - 1.84 6.26 2.13 281
Oct 29,225 292,250 1.93 6.64 2.43 2.98
Nov 29,225 321,474 2,12 7.39 2.55 3.31
Dec 29,225 350,699 2.35 8.25 3.08 3.69
LI BN B BN BE BN ‘ 1981 & 2 2 & &3 88
Jan 29,225 379,924 2.61 9.26 3.21 4.14
Feb 29,225 409,149 2.72 9.73 3.34 4.34
Mar 29,225 438,374 3.0 10.99 3.46 4.89
Apr 29,225 467,599 331 12.16 3.719 5.40
May 29,225 496,824 331 12.16 3.93 5.40
Jun 29,225 526,049 3.65 13.72 4,04 6.07
Jul 29,225 556,274 3.65 15.72 4.35 6.07
Aug 29,225 584,499 3.93 14.92 4.42 6.58
Sep 29,225 613,724 3.96 14.92 4.59 6.58
Oct 29,225 642,949 4.01 15.16 4.64 6.68
Nov 29,225 672,174 4.16 15.77 4.95 6.94
Dec 29,225 701,399 446 16.47 5.32 6.94

*EFH = engine flight hours
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313 PROBLEMS

Problem 3-1

A fleet of 100 engines is subjected to a Weibull failure mode. The Weibull has a slope of 3
and a characteristic life of 1000 hours. The current engine times are as follows:

Numdber of
Engines Engine Time
20 - 150 hrs
20 200
20 250
20 300
20 350 -

A.) What is the expected number of failures now? B.) How many additional
engines will be expected to fail in 6 months if the utilization rate is
25 hr/mo? Assume that failed units are not fixed. »

Problem 3-2

A turbine airfoil has caused unscheduled engine removals at the following times and
Jocations. . - ‘

Time at :

Failure - Location

684 (hours)
821
812
701
770
845
855
850
806
756
755
741
681
: 667
- ' 649
603
600
596
576
5h04
476

ITEHUOOUNWONOAIEONOE> > > 5>

A) Generate a Weibull using the attached populations, overall (Figure 3.13)
and at Location A (Figure 3.14). How do these Weibulls compare?
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B) How many failures can be expected in the next 12 months?, the next 24
months? from each population? (Use 30 hours/mo.)

Frobiem 3-3

Giiven a control failure mode with g = 1.26 and n = 19,735 total operating hours, and the
population of nonfailed units Figure 3.15, A) how many failures can be expected by the time
each unit has reached 1000 hours? B) 2000 hours? C) If the life of a control is 4000 hours, what is
the projected total number of failures in the life of the control if no further controls are added to
the population? D) If inspections “zero-time,” or make the control units “good-as-new; how
many failures are projected to occur in this population by 4000 hours with a 1000 hour
inspection? E) with a 2000 hour inspection? .

Problem 3-4

Using the table of 0-1 random numbers in Table 3.9, and the three Weibull fgilure modes:

a. B =076

2 = 96,587 hours
h B = 2638

7 = 4996. hours
c 8 =174

n = 1126. hours

Assume two scheduled inspections, at 1000 hours and 2000 hours, that make modes a and ¢
“good-as-new,” while not helping mode b. A usage ra‘e of 25 hours per month is assumed.

The following population of 5 engines is at risk:
1 engine at 100 hours, 1 engine at 200 hours, 1 enginé at 500 hours,

1 engine at 700 hours, and 1 engine at 900 hours.

A)  How many failu;es will occur 6ver‘ tﬁe next 48 months?
Use the Monte Carlo simulation technique to solve this probiem.
B) = Would it be advisable to drop the 1000 hour inspection?

Solutions to these problems are in Appendix J.

62




. USHDINGOY [J0200() g1 dangisy
a922L 110628 B50VSZAY
L SINOH I |
00,2 00v2 00LZ 008L 00SL 00Z2L 006 009 00€ - O
ofooolo | . 0
L
N‘
e ¢
b
- s|_J9 99| || 14
Ll 12 ¢ L] ] 1 2
88 8 sl L. - S92Ud1IN220
66 6 619
JO jJuadIad
—8
| T
’ _ - =0t
8GlL = 92zis a|dweg
—cl




uonondo g v ouonparp  Cppe auangig
59221 w—oomw 660VS2ZAY v WL—JO—I—
00/¢ 0O0Fc 00ic CO8L 0OSL 002L 006 009 QOf 0
0olo o olo o ¢ 00| Joool?
— N |
] [ T L 4 3 |
S92Ua.1IN200
10 1UadIad
—9 .
| ip
2 eC e 2 cczeczee w
Ge = 9ZIS m_aEmm m
—ot ]

V Tt N Y'Y
M M-v ni—-\ ~ -0 VW’

J\) J...J. U P AL
NN, 7 O BA S




uonondoy joajuo))  gpg oansyy .

89221 L10E28 O00LPSSAV

SJNOH
- 0081 00SL  00ct 006 009 00¢ 0 0
{] c
teeel |
UL _ | - 5
& l_s & S92Ua.LIN220
L= | HEH H LH BV 40 jusose
9s ks J 9585~ d
W. 2 t98969
U L
4 g 1
80€l - azis ojdwes |
-8




A5 2. Y O

4

F &

TABLE 39. TABLE OF UNIFORM RANDOM NUMBERS FROM 0. TO 1.0

0.329 0.604 0.615 0.300 0.070 0.845 0.494 0.624 0.085 0.194
0.612 €.337 0.393 0.163 0.774 0.620 0.596 0.503 0.857 0.794
0.545 0.945 0.35% 0.429 0.7€9 0.675 0.639 0.203 0.643 0.577
0.232 0.511 0.311 G.213 0.124 0.827 0.354 0.556 081 0811
0.221 0.480 0.345 0.167 0.390 0.987 0.428 0.257 0.298 0.198
0.210 0.457 0.010 0.083 0.837 0.265 0.638 0.943 0.747 - 0.164
0.519 0.668 0.717 0.230 0.133 0.6/2 0.658 0.491 0.772 0.676
0.166 0.037 097 0.169 0.815 0876 0.668 0.649 0.205 0.551
0.138 0.601 0.761 0.490 0.655 0.238 0.277 0.123 0.9i8 0.984
0.214 0.738 0.224 0.706 - 0.748 0.090 0.389 0.699 0.562 0.761 -
- 0418 0.422 0.402 0.270 0.928 0.982 0.365 0.933 0.323 0.367
0.950 0.469 0.709 0.431 0.854 0.363 0.57 0.630 0.521 - 0.974
0.202 0.503 0.434 0.394 0.851 0.909 0.168 0.058 0.673 0.012
0.180 0.104 0.384 0.013 0.364 0.480 0.687 0.636 0.340 0.805
0.447 0.360 0.506 £.980 0.605 0.408 0.833 0.544 0.£61 0.476
0412 0.785 0.084 0.222 0.750 0.600 0.495 0.497 0.821 0.105
0.580 0.342 0.855 0.990 0.765 0.669 0.895 0.635 0.842 0.850
0.083 0.963 0.i34 0.847 0.717 0.054 0.420 0.249 0.041 0.502
0.609 0.996 0.793 0.526 0.159 0.861 0.507 0.826 0.249 0.688
2.661 0.198 0.701 0.376 0.932 0.888 0.655 0.608 0.838 0.703
66
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CHAPTER 4

WEIBAYES — WHEN WEIBULLS ARE IMPOSSIBLE

4.1 FOREWORD

At times a Weibull plot cannot be made because of deficiencies in the data. Typical
situations would be when:

(1) There are too few or no failures.

(2) The age of the units is unknown, and only the number of failures is
known. ' :

(3) A test nlan for a new design is needed.

' Weibaves analysis has been developed to solve problems when Weibull analysis cannot be i
! _ used. Weibayes is never preferred over Weibull analysis but is often required because of
; weaknesses in the daia. Weibayes is defined as Weibull analysis with an assumed (3 parameter.
i Since the assumption requires judgment, this analysis is regarded as an informal Bayesian
i procedure,

i 42 WEIBAYES METHOD
In a Weibayes analysis, the slope/shape parameter £ is assumed from historical failure data
or from engineering knowledge of the physics of the failure. Deperding upon the situation, this

may be a strong or weak assumption. Given 8, an equation may be derived (Appendix E) using
the method of maximum likelihood to determine the characteristic life, 7.

N tf /o :
"= [»2. ] @

Where t; is the time or cycles on unit;, r is the »1mber of failed units and 5 is the maximum
likelihood »stimate of the characteristic life. ’

! With g assumed and 5 calculated from equation 14.1), a Weibull equation is determine-*. A
Weibayes line can be plotted on Weibull paper. The plot is used exactly like a Weibull
distribution. ' R B

4.3 WEIBAYES — NO FAILURES

In many Weibayes problems no failure has occurred. In this case, a second assumption is
required. The first failure is assumed to v in.minent; i.e. r = 1.0 (otherwise, the denonsinator in
equation (4.1) would be zero). The Weibayes line based on assuming one failure is conservative,
» with at least 63« confidence that the true Weibull lies to the right of the Weibayes line. (See
Appendix E.) '

The exact confidence level of the Weibayes lower bound is unknown because it depends on
the time to the first failure. If the Weibayes line is always constructed immediately before the
! first {ailure, the Weibayes confidence level is 63, If Weibayes analyses are consistently done
i long before the first failure, the confidence level is actually much higher than 63¢ . Therein,
Weibayes displays conservatism since the confidence level, while unknown, is at least 63", .

!
:
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44 WEIBEST — NO FAILURES

In the early development and use of this analysis* 0.693 failures would be assumed instead
of 1.0, This is less conservative. The result was called a Weibest line. The Weihest line is a 50,
lower confidence bound on the true Weibull characteristic life versus 63 /. for Weibayes with r =
1.0, In fact, Weibayes lines may be calculated for any confidence level (Appendix E).

4.5 UNKNOWN FAILURE TIMES

Sometimes the number of failures is known, but not the times to failure; again Weibayes
may provide a solution. For example, if the failed part is nonserialized and the component or
system has been through overhaul, it may be impossible to determine the time on the failed
unit(s) or the success unit(s). However, if the time on the compoenents or systems is known, it
may be reasonable to assume that the same distribution of times applies to the nonserialized
parts. In this application, there is more uncertainty in assuming a value for g. If the physics of
failure are known, a library of Weibull failure modes may provide an estimate or a range of
estimates; the maximum and minimum g may each be used to determine the sensitivity. of the
analysis to the assumption.

“If the times on the failed units are known but the tlmeq on the successful unm are
unknown, a Weibull shift method may be employed. (See Section 6.3.)

46 WEIBAYES WORRIES AND CONCERNS

The Weibayes method is required when there are deficiencies in the data or when the data
are not available. The Weibull method is always preferred over Weibayes, so it is appropriate to
critically question the assumptions required by the Weibayes method in each case since the
answers Lo these questions vary for each application. Of course, the validity of the results
depends on the validity of the assumptions. Typical questions to be raised are:

(1) How valid is the assumed slope, 8? If this assumption is shaky, should a
range of slopes be tried?

(2) With a redesign, what is the probability that a new failure mode is
present? A Weibayes test may not discover a new mode.

(3) With nonserialized parts, some assumption must be made to obtain
success or failure times. How valid is the assumption?

47 EXAMPLES OF PROBLEMS/ANALYTICAL SOLUTIONS

Prablem 1) Fifteen vane and case failures have been experienced in a large fleet of engines. .
Weihull analysis provides a g of 5.0 (see Figure 4.1). Three redesigned compressor cases have
been tested in engines to 1600, 2900 and 3100 hours without failure. Is this enough testing to

substantiate the redesign?

* Mr. Joseph W. Grdenick of Pratt & Whitney Aircraft/Commercial Products Division is credited for much of the
original development of the Weibest concept
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Assuming g - 6.0 and given the times on the three redesigned units, equation (4. l) may be
used to ullculute the characteristic life for a Weibayes solution.

5 p 5 . * s
- [(1600) + (29;)()) + (3000) ] = 3406 hr

4.2)

The Weibayes line is plotted in Figure 4.2. We may state with 639 confidence that the
failure mode for the redesigned units is to the right of this line and, therefore, significantly
better than the bill-of-material vane and case. It is possible that the redesign has eliminated this
- failure mode but that cannot be proven with this sample of data. As more time is put on these
units without failure, the Weibayes line will move further to the right and more confidence will
be gained that the failure mode has been eliminated. The assumption of slope, in this case, is
based on an established Weibull failure mode and is valid.

Problem 2) There have been 38 turbopump failures in service (Figure 4.3). Based on the physics
of the failure, an accelerated hench test was designed and two more turbopumps failed in a
much shorter time (Figure 4.4). Notice that the bench test Weibull has the same slope as the
field failure Weibulls. This provides some confidence that the accelerated test provides the same
failure mode experienced in service. The turbopump was redesigned to fix the problem and two
units were tested on the bench to 500 hours without failure under the same accelerated
conditions, Is the redesign successful? What service experience should be expected?

Using equation 4.1 and the slope from the Weibulls in Figure 4.3, the 'Weibayes
characteristic life is calculated, assuming the first failure is imminent.

5007 + 50027 Jas
-2 PP 1Y = 646hr :
n [ 1 ] (4.3)

This Weibayes line is plotted on Figure 4.5. If we assume that the ratio of characteristic
lives (n's) for the B/M pump in service to the B/M pump in the rig test is a measure of the
acceleration of the test, a Weibayes line can be estimated for the redeengned pump in service,
This line is also plotted in Figure 4.5.

MRedenigned/Service = (1B/M/SVC * "B/M/Rig) "Redesizn/Rig

(2186.2 hr + 140 hr) 646.3 hr

(15.6) 646.3

"Rode:igned/Servico = 10,082 hr

Problem 3) One batch of turbopumps (DF3) produced nine service failures involving fire in

flight. From a Weibull analysis, it was decided to replace these pumps after 175 hours of

operation. Two other batches of these pumps, DF1 and DF2, had more service time but no
failures. Teardown and inspection of some of these pumps showed that the failure mode
(swelling of the ball bearing plastic cage) was present but to a lesser degree. There were not
enough spare pumps to immediately replace the DF1 and DF?2 units. How long can replacement
of DF1 and DF2 be safely delayed?
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There were no failures in DFL and DF2 even though symptoms of the tailure mode were

present. A Weibayes analysis, using the existing Weibull slope of g 4.6 and assuming the 0.693

failures were imminent, produced the Wethest (50°,. confidence) line shown in Figure 4.6. The

DEF3 retrofit at 175 hours corresponds to a risk level of B.7 as indicated in Figure 4.6. The same

risk level was applied to the Weibayes line and a 700 hr safe period was recommended. DF1 and

DEF2 pumps were replaced when they reached 700 hours. This did not create a supportability

» problem as these pumps had acquired very little time. Weibest and Weibayes lines move to the
right with time as long as no failures are observed due to the increase in success time. In this

case, the Weibest B.7 time eventually exceeded the pumps’ overhaul time of 1000 hours.

. . Therefore, many pumps were utilized to their full life without premature replacement based on

) the Weibest Analysis. : ' : '

4.8 PROBLEMS
Problem 4-1

Two bolt failures due to low cycle fatigue have heen observed in a flight test fleet of six
engines having the following times: 100, 110, 125, 150, 90['and 40 hr. The bolts are not serialized
and as the failures were discovered after the engines were overhauled, it is not known which
_engines had the failed parts. If low cycle fatigue Milure modes usually have slope parameters
between 2 and 5, and after rebuild the engine will accumulate 100 hours in the next year, predict
the number of expected failures. (Assume the two new "replacement bolts are installed in the
rebuilds of the high time engines.) ° '

[

Problem 4.2 !
The design system predicted B.1 life for the compresisor disk is 1000 cycles. Five disks have
accumulated 1500 cycles and five have 2000 cycles wiﬂhomnt any failures. If most disk LCF

failures have a g of 3.0, is this success data sufficient {o increase the predicted design life?

Solutions to these problems are in Appendix J. '
|
!
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CHAPTER §

SUBSTANTIATION AND RELIABILITY TESTING

5.1 FOREWORD

The objective of this chapter is to address the statistical requirements of substantiation -
and reliability testing when the underlying failure distribution is Weibull. Substantiation
testing demonstrates that a redesigned part or system has eliminated or significantly improved a
known failure mode (3 and 5 are assumed to be known). Reliability testing demonstrates that a
reliability requirement has been met. '

It is assumed in the reliability testing section that the Weibull slope parameter, g, is
known. If the failure distribution is known to be Weibull but g is unknown, test plans devéloped
by K. Fertig and N. Mann! may be used.

A test plan gives the required number of units and the amount of time to be accumulated
on each to either substantiate a fix or meet a reliability goal. It also gives a success criterion,
where the test is passed if the success criterion is met. In a zero-failure test plan the success
criterion is no failure: the test is passed if every unit runs the prescribed amount of time and no
unit fails while on test.

Test plans can also be generated with a 1-failure success criterion, a two-failure success
criterion, etc. But all of these plans require more testing than the zero-failure plan.

A measure of confidence is usually built into statistically designed test plans, guaranteeing
that if the failure mode in question has not been fixed or the reliability requirement has not
been achieved, there is a low probability that the test will be passed. The zero-failure test plans
in this chapter guarantee with 90 confidence that the test will be failed if the required goal has
not been achieved. Thus, a part or system will have at most a 10 chance of being accepted as
satisfactory when in fact it is not.

52 ZERO-FAILURE TEST PLANS FOR SUBSTANTIATION TESTING

A ball and roller bearing system has a Weibull failure mode, unbalance, with g (the -
Weibull slope parameter) equal to 2, and n equal to 500 hours. The system is redesigned, and
three redesigned systems are available for testing. How many hours should each system be
tested to demonstrate that this mode of unbalance has been eliminated or significantly
improved? ‘ )

The Weibull plot in Figure 5.1 illustrates the time-to-unbalance distribution.
Table 5.1 is used to answer this type of question. It is entered with the value of # and the

number of units to be tested. The conesponding table entry is multiplied by the characteristic
life to be demonstrated to find the test time required of each unit.

'Mann, N. R. and K. W. Fertig, (1980) Life-Test Sampling Plans for Two-Parameter Weibull Populations.

Technometrics, 22, 165-177.
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TABLE 5.1 CHARACTERISTIC LIFE MULTIPLIERS FOR ZERO-FAILURE TEST
PLANS
CONFIDENCE LEVEL: 0.90

B .
. 05 25 4.0 4.5 5.0
Sample Infant 10 LS 20 Gradual 3.0 3.5 Rapid Wearout
Size Mortality Random + eeeess Wearout  -<---- + + — (Brick Wall) - +
3 0.589  0.767 0.838 © 0.900 0916 0927 0936 0943 0948
4 0.331 0.5876 0692  0.759 0.802 0.832 0854 0871 0.884 0.895
5 0212 0460 059  0.679 0.733 0.772  0.801 0.824 0.842  0.856
6 0.147 0.384 0528 0.619 0.682 0.727  0.761 0.787 0.808  0.826
7 0108 0329 0477 0574 0.641 0690 0728 0.757 0.781 0.801
8 0083 0288 0438 0.536 0.608 0.660  0.701 V7327 0758  0.780
9 0065 0256 0403 0.508 0.580 0635 0677 0.711 0.739  0.761
10 0053 0230 0376 0480 0.556 0613 0657 0693 0722 0.745
12 0037 0.192 0333 0438 0.517 0.577 0624 0662  0.693 w719
14 0027 0.164 0300  0.408 ).486 0548  0.597 C.637 0.670  0.697
16 0.021 0144 0275 0379 0.461 0524 0575 0616 0.650  0.679
18 0016 0.128 0.254 0358 0.439 0504 0556 0598  0.633 0.663
20 0013 0115 0237 0339 0.421 0486 0539 0582 0619 0649
25 0008 0092 0204 0303 0.385 0452 0.506  0.551 0.589  0.62)
30 0.006 0077 0.181 0.277 0.358 0425 0480 0526  0.565  0.598
40 0003 0058 0.149 0240 0.319 038 0442 0490 0530  0.565
50 0002 0046 0.128 0215 '  0.292 0358 0415 0463 0505  0.540

In the bali and roller bearing example, Table 5.1 is entered with § equal to 2.0 and a sample
size of three. The corresponding table entry is 0.876. The characteristic life to be demonstrated
is 500 hours. The number of hours that each system should be tested is:

0.876 X 500 kours = 438 hours.

Thus, the zero-failure test plan to substantiate the ball and roller bearing system fix is: test
three systems for 438 hours each. If all three systems are in balance at the end of the test, then
the unbalance mode was either eliminated or significantly improved (with 907 confidence).

If there is a constraint on the amount of test time accumulated on each unit, Table 5.2 is
used to determine the number of units required for the test. For example, suppose in the
previous example that no more than 300 hours could be accumulated on any bearing system.

- Table 5.2 is entered with the known value of 3 and the ratio of the test time to the characteristic
life being substantiated. In the ball and roller bearing system example, Table 5.2 is entered wnh\

$ equal to 2.0 and the ratio

300 test hours per system
500 hour characteristic life

= 0.6

The corresponding entry in Table 5.2 is seven. The resulting test plan is: test seven systems for
200 hours each. If all seven systems are in balance at the end of the test, then the unbalance
mode was either eliminated or significantly improved (with 90¢;. confidence).
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TABLE 5.2 REQUIRED SAMPLE SIZES FOR ZERO-FAILURE TES "I‘ PLANS
CONFIDENCE LEVEL: 0.90

8. B
05 . 25 4.0 45 50
Infant 1.0 L5 2.0 Gradual 3.0 35 Rapid Wearout

Ratio Mortality Raindom + eeeee- - Wearout  ------ + + - (Brick Wallj ~ +

O-Ol 24 231 2303 23025 X BN (1127 ) nepRS [ XX E L) (T 111 SES0E
0‘02 7 116 815 5757 4‘)703 e ee [ 2121 EEE LY} s9sse SEseS .
0.03 14 77 444 2559 14771 80278 seess  ssses  seess bt ’
o.(,‘ l2 58 288 1440 7196 35977 : 0.‘..‘ ‘thwte (212 1] RS
0.05 H 47 206 922 4119 18420 82377 bbb srene soere
0.06 10 39 157 640 2612 10660 43519 shrir | Sesee haddad
0.07 9 a3 125 470 1777 6713 25373 95898  *eesr evese
0.08 9 29 102 260 1272 4498 15900 56214  seses aeeke
0.09 8 26 86 285 948 3159 35094 350:24 bt bhdadd
0.10 8 24 73 231 729 2303 7282 27025 72812 e
0.20 6 12 26 58 129 288 644 1440 3218 7196
0.30 5 8 15 26 47 86 156 285 519 948
0.40 4 6 (1) 15 23 36 57 920 143 225 .
0.50 4 5 7 10 14 19 27 37 53 T4 .
0.60 3 4 ] 5 9 11 14 18 23 30 J
0.70 3 4 | 4 5 6 7 9 10 12 14 i
0.80 3 3 | 4 4 5 5 6 6 7 8 .
0.90 3 3 { 3 3 3 4 4 4 4 4 ;
1.00 3 3 3 3 3 3 3 3 3 3

\

-

ssesendicates sampls size exceeds 100,000 ) x

1
’

5.3 ZERO-FAILURE TES'IT PLANS FOR RELIABILITY TESTING
' |

This section contains zero-failure test plans for demonstrating a reliability goal when the
underlying failure distribution is Weibull with known slope parameter 5. A turbine engine
combustor's reliability goal was 99¢,. reliability at 1800 cycles under service-like conditiots.
Success was defined as a con:lbustor having no circumferential cracks longer than 20 inches (out
of a possible 53 inches). The number of cycles required to reach a 20-inch crack was known to
follow a Weibull distribution with @ equsl to 3. How many combustors must be tested, and how
many cycles must each accumulate, to demonstrate this goal with a high level of confidence?

First, the reliability goal is re-expressed as a characteristic life goal, and then the test plan
ix designed. .

Re-expression of Reliability Goal
Reliability requirements generallv assume ore of the following forms: .

Form 1: The reliability of the unit is required to be at least X ‘.. aftcr a certain )
number of hours or cycles of life. (This is equivalent to the percent .
failing being at most 100-X“.). The Weibull plot in Figure 5.2
illustrates the requirement of av least 99¢ reliability (at most 1%
unreliahility) at 1000 hours.

Form 2: The B10 life (or Bl life, or B.1 life, etc.) is required to be at least X
hours or cycles. By definition, the unit has a 10", chance of failing
before reaching its B10 life, a 1 chance of failing hefore reaching its
B1 life, etc. See Figure 5.3.
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Figure 5.4 illustrates the requirement of a 7000 hour B10 life.
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Reliability requirements assuming either of these two.forms can be expressed as a
minimum characteristic life requirement. Given that the time-to-failure distribution is Weibull,
with a known g, reliability at time t is a function of

R() e ™ .
5.1)

This expression can be rearranged algebraically, giving

t .
T IS ROM ' ' (5.2)

Fquation (5.2) can be used to express either form of reliability requirement in terms of n. If the
requirement is, for example, that the reliability of the turbine engine combustor must be at least
0.99 at 1800 cycles (8 = 3), then substituting t = 1800 and R(t) = 0.99 into equation (5.2) gives

¢

- 1800
| —In(0.99))'"

or n = 8340.9

The 0.99 reliability requirement is equivalent to the requirement that » be at least 8340.9 cycles.
See Figure 5.5.

Similarly, if the requirement 'is a B10 life of 2000 hours, then substituting t = 2000 and
R(t) = 0.90 into equation (5.2) gives
2000

7= —__|—1n(o.90)|"’ ,assuming g = 2

orn = 6161.6

Thus, the B10 life requirement of 2000 hours with 8 = 2 is equivalent to the requirement
that n is at least 6161.6 hours. See Figure 5.6. .

Designing Tewnt Plans

Once the minimum characteristic life reqdirement has been caiculated, Tables 5.1 and 5.2
can be used to design the test plan.

In the combustor reliability example, the 99¢. reliability goal at 1800 cycles was re-
expressed as an 8340.9 cycle characteristic life goal. Ten combustors were available for this
reliability demonstration test. To find the test cycles required of each combustor, enter Table
5.1 with g equsl to 3.0 and a sample size of 10. The corresponding table entry is 0.613. Multiply
the table entry by the characteristic life requirement to find thc test time required of each unit.
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In the combustor example, multiplving the ‘Table 5.1 entry of 0613 by the characteristic
life requirement of BH0.9 eyveles gives o test time of:

0.613 < B0 eyveles SO eveles,

Thus, the zero-failure test plan to demonstrate 99, reliability at 1800 cyeles requires-testing 10
g _ combustors for 5113 cycles each. If no combustor develops a circumferential crack longer than
20 inches, then the test is passed.

How many combustors are required if each can accumulate at most 750 test cycles? To
answer this, enter Table 5.2 with the assumed value of g, the Weibuli siope parameter, and the
ratio of the test time to the calculated characteristic life requirement. In the combustor
example, § was assumed to be 3.0, and the ratio of the test time to the calculated characteristic
life requirement is:

750 test cycles per combustor
8340.9 cycles characternistic lite

= 0.09

The correspunding entry in Table 5.2 is 3159. The resulting test plaa requires testing
3159 combustors for 750 cycles each. If no combustor develops a circumferential crack longer
than 20 inches, then the test is passed.

54 TOTAL TEST TIME

Two reliability test plans were constructed in Section 5.3 to demomtrate that a
characteristic life was at least 8340.9 cycles, with 90‘ o conﬁdence.

Number of Test Cycles.. Total Test
Combustors Per Combustor Cycles
Plan 1 3,159 750 3,159 x 750 = 2,369,250
Plan 2 10 5,113 10 X 5,113 = 51,130

Note that, in terms of total test cycles, it is more efficient to run the smaller number of
combustors for a greater number of cycles. Plan 2 demonstrates the same reliability as.Plan I,
but requires fewer total test cycles.

~“This efficiency is realized for every test plan in this section where 3 excee.'s 1 9.

The situation is reversed for 8 less than 1. In this case, the greater the number of units on
test, the lower is the total test time. -

When g is 1, the total test time is constant, regardless of the number of items on test.
. 5.5 ADVANTAGES AND LIMITATIONS OF THE ZERO-FAILURE TEST PLANS

S The test plans introduced in Section 5.2 limit the probability that substandard reliability
units will pass the tests. This is generally the most important goal in reliability testing. Also, the
test plans are simple and easy to use.

However, they are only designed to limit the acceptance of substandard reliability items.
They do not control the probability that units from a high reliability design will pass the tests.
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In some instances, the experimenter is interested in guaranteeing a high probability of
acceptance for high reliability units. '

For example, to demonstrate that a characteristic life is at least 2000 hours with 90,
confidence, assuming 8 .5, requires that 14 units be tested 1000 hours without failure. (Enter
Table 5.2 with # = 2.5 and the ratio 1000 test hours per unit/2000 hours = 0.5 to find 14 units.)
Another requirement might be thay designs with characteristic lives greater than 4000 hours

. pass the test with at least 90, probability.- The zero-failure test gives these high-reliability

designs only a 65 chance of passing. (See Figure 5.7.)

There are two remedies for this problem. The minimum characteristic life requirement can
be reduced enough 10 guarantee a suitably high probability of acceptance for high reliability
units, or the size of the test can be increased until both requirements are met. The second option

is censidered in Sections 5.6 through 5.8.

The curves in Figure 5.7 assist the experimenter in determining how much to reduce the
minimum characteristic life requirements to meet high reliability requirements. They give the
prebability of passing the zero-failure test as a function of the Weibull parameter g and the ratio
of the characteristic life of inverest to the minimum required characteristic life. For example, the
probability of successfully completing the zero-failure test mentioned earlier in this section for
units whose characteristic life is 4000 hours is 0.65. To see this, enter the g = 2.5 curve of Figure

5.7 with the x-axis ratio of:

R = 4000 hours (characteristic life of interest)
2000 ~ours (minimum charactenstic life requirement)

orR = 24

The probability of successfully completing the test, from Figure 5.7, is 0.65.

In the preceding exsmple, suppose the characteristic life requirement were dropped from
2000 hours to 1250 hours. Only five units would havc to he tested 1000 hours, instead of 14.
{Enter Table 5.2 with # = 2.5 and the ratio (1600 test hours per unit/1250 hour characteristic life
requirement) = 0.8, to get the five-unit requiremen.,. To find the probability of acceptance of

the 4000-heur characteristic life design, enter the g = 2.5 curve in Figure 5.7 with a ratio of 4000

hours/1250 hours = 3.2. The chanres of passing are 88%, — close to the 90/ requirement.

Reliability demonstration tests that terminate successfully with no failure have one other
advantage. Very high reliability often makes a demonstration test-to-failure impractical. In this
case, a zero-feilure test plan is desirable. The risk is that unless sume units are run to failure, the
statistical assumptions inherent in the test design cannot be validated. (For example, with failed
units, the Weibull slope parameter 8 can be estimated and compared to the assumed value of j3.)

5.3 NON-ZERO-FAILURE 7EST PLANS

In Section 5.2, test plans were introduced to demonstrate that a lower limit characteristic
life haa been achieved, with 90, confidence. The plans assume that the unit’s time-to-failure
discribution is Weibull with known slope parameter 3.

N
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| As discussed in Section 5.5, these test: do not control the risk of rejecting units with
acceptably high characteristic lives (called producer’s risk). They only control the risks of
passing the test with a characteristic life belo'w the lower limit (calied consumier’s risk). This risk
was set at 10, .

The methods for test plan construction introduced in this section provide coatrol over both
forms of risk il the zero-failure plans do not adeguately balance the two. The methods can he
found in “Methods for Statistical Analysis of Reliability and Life Data’™.

5.7 DESIGNING TEST PLANS

These tests will have the following structure:

A. Put nitems on test for t hours (cycles) each.
B. When an item on test fails, it is not replaced.
. 1f ryor fewer failures occur, the test is passed.

This section describes methods for calculating ry and n satisfying the two constraints:

A. The probability of passing the test with a characteristic life as low as »,
should be no more than «, (minimum life requirement).

i : B. The probability of passing the test with a characteristic life as high as n,
' should be at least a,. ' :

n, is the characteristic life to be demonstrated. », is sometimes referred to as the *“design”
characteristic iife. o is usually ret at 0.05 or 0.1, and «, is usually set at (.9 or 0.95.

The equations to be introduced require the definition of some standard mathematical
notation.’ ,

A. Summation

x, =x +x,+ - = - 4+ x,

Zt4s

! Mann, Nancy R., Ray E. Schafer, and Nozer D. Singpurwalla (1974), Methods for Statistical Analysis of Reliability and \
, Life Data, John Wiley and Sons, New York, Chapter 6, pp 312-315 and p 328. \




st

B. Factorial
n - n(n-D(n 2)eeeennn. 2]

€. Number of subsets of size r from a set of n

(1) -

Assuming that the time-to-failure distribution of the items on test is Weibull, with known
parameter g, the following equaiions should be solved for ryand n to satisfy the two “probability
of passing” requirements. '

s ﬁ n L4 l__ )n'r
o ' 0( r )p“( P 5.3)

fir

w = 5T ) pa-pr

—(t/
1-e~{ no)ﬂ
]_.e—(t/wl)ﬂ

where p, =
P =
t is the test time per unit
n is the number of units on test
rg is the allowable number of failures
1o is the demonstrated characteristic life
n, is the design characteristic life
g is the assumed value cf the Weibull slope parameter

agis the probebility of passing the test with a characteristic life equal to ny («,
is set by the experimenter)

@, is the probability of passing the test with a characteristic life equal to n (e
is set hy the experimenter)

Equations (5.3) and (5.4) generally require a computer Jor their solution. Certain computer
packages ere available that solve these equations. Dr. K. E. Case of the Oklahoma State
Uriversity School of Industrial Engineering and Management (Stillwater, Oklahoma) built an
interactive program that includes the ability to solve equations (5.3) and (5.4.)!

Equations (5.3) and (5.4) generally cannot be solved for a combination of n and ry that
satisfy the target probabilities «yand «, exactly. Some authors recommand solving the equations
80 that the actual probability «y of passing the test with n = nyis no greater than «, and the
corresponding true probability «,’ is at least as great as «,. The next section discusses the
method recommended by Dr. Case! for solving equations (5.3) and (5.4).

"Case, Kenneth E. and Lynn L. Jones (1979), “An Interactive Computer Program for the Study of Attributen

Acceptance Sampling. Final Technical Report,” Oklahoma State University, School of Industrial Engineering ard
Management, Stiliwater, Oklahoma. -
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5.8 RECOMMENDED METHOD FO” SOLVING EQUATIONS

Dr. Case’s final technical report’ describes the recommended method. It consists of the

* following steps:

1 - e-(l/!)ﬂ :

1. Calculate P =
0 “(t/lv)ﬂ

py =1
2. Set "0’0

3. Find the values of n that satisfy equations 5.3 and 5.4. Cali them nj and n,,
respectively.

Py
4. Calculatea = n.p, and b = py/p,.

5 Ifais fvreater than b, increase ry by 1, and repeat steps 3, 4, and 5.

6. Continue the process until two contiguous values of ry are found whose
calculated a-ratios bound b.

7. Select as the final value of ry that which has the a-ratio nearer the desired
ratio b = py/p,.

8. For the selected value of ry, there are two values of n,nyand n,, calculated in
step 3. Average ngand n, to get the final sample size:

_ mp t+on
n= =g

5.9 PROBLEMS

Problem S5-1

A turbine engine exhaust nozzle control bearing was failing prematurely due to fatigue.
Bearing failures followed a Weibull distribution with g equal to 1.5 (a common value for bearing
fatigue) and n equal to 3000 hours. The bearing was redesigned, and the environment in which it
operated was improved to give the bearing a higher expected life. Twenty redesigned bearings
were available for testing. How long should each be tested to demonstrate with 90, confidence,

- that the fatigue mode was significantly improved?

Probiem 5-2

High pressurs turbir e vanes were eroding beyond allowable limits. A significant percentage
of the engines in service were being removed for vane repair or replacement prior to their
scheduled turbine maintenance. The time to failure — determined by the worst vane in the set
— followed a Weibull distribution with 8 = 3 and n = 1300 cycles.

Through redesign and material changes the vane's durability was improved. Design a test
to demonstrate the new vane’s goal: no more than 5¢;. of the engines should be removed hy 2300
cycles for vane erosion (with 90 confidence). During this test, assume that the turbines are

' Case, Cenneth E. and Lynn L. Jones (1979), “An Interactive Computer Program for the Study of Attributes
Acceptance Sampling. Final Tecknical Report,” Okhhoma State University, School of Indusirial Engineering and
Management, Stillwater, Oklahoma.




limited to running at most 5000 cycles each. Also, assume that the time to engine removal for
excessive vane erosion would still follow a Weibu!l distribution with 8 = 3.

Problem 5-3:

In Section 5.5, the zero-failure test plan was given to demonstrate that the characteristic
life of a Weibull distmibution with g 2.5 is at least 2000 hours. with 90, confidence. It
required that 14 units be fested 1000 hours, The test is passed if none of the 14 units fails durtng
the 1000 hours of testing.

The additiongl requirement was added that units with characteristic lives greater than
4000 hours should pass the test with at least 90, probability. It was shown that the zero-failure
test plan could only guarantee a 65 chance of passing.

Use the methods introduced in Section 5.8 to construct a test satisfying all of the above
requirements.

Solutions to these problems are in Appendix J.

t
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CHAPTER 8

CASE HISTORIES WITH W. BULL AFPLICATIONS

;

6.1 FCNREWORD

This chapter provides examples of Weibull analysis used in a variety of situations, The
examples were chosen from studies which include the complete cycle of analysis, deduction, .
recommendation, and implementation. The case studies selected are: ' ‘

(1) Turbopump Bearing Failures

(2)  Gearbox Housing Cracks

¢ Opportunistic Maintenance Screening Intervals
(4)  Support Cost Model '

t5)  Vane and Case Cracking.

6.2 EXAMPLE 1: TURBOPUMP BEARING FAILURES

When this study began, three failures of the augmentor turbopump of an aircraft fighter
engine had occurred in the field. This was an urgent problem because the failure enabled fuel to
escape and iunite. Because of this hazard, top priority was assigned to the analysis of data that
might heip resolve this problem.

6.3 INITIAL ANALYSIS — SMALL SAMPLE

The first analysis was the evaluation of the three failures through Weibull analysis. Note
that this was an extremely sma!l sample from the 978 turbopumps that were operating in the
tleet. The data were ranked by turbopump operating time, treating the successful pumps as
censored units. The resulting Weibull plot is shown in Figure 6.1.

Fven with this small sample some valuable ohservations coild be made. First, the very’
steep slope, # = 10, indicates that the failure mode is one of rapid wearout preceded by a
relatively safe period. Inspection of Figure 6.1 shows that the probability of a turbopump failure
prior to 200 hours is negligible, but after 250 hours the probability increases rapidly.

A second infe: 'nce can be made from the initial Weibull analysis. The very steep slope (38

10) along with the existence of many unfailed pumps with run times greater than the failed
pumps suggests that the faited pumps are part of a unique batch. The method used to determine .

whether or not a given failure mode is a batch problem is to evaluate the Weibull equation with

the parameters calculated (Figure 6.1) for each successful and failed turbopump. For each
pump, the probability of failure is determined from the Weibull equation and these probabilities .

are then summed. If the failure mode applies to the entire flect, the sum of the cumulative

probabilities should approximate the number of failures observed, in this case 3. For example:
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where:

2F(t;) = sum of probabilities of each unit
;= time on each unit (both failed and unfailed)
n = 520.963 = characteristic life
8 = 10.094 = slope of Weibull
e = exponential (base of natural logarithms).

However, with these data the answer was 117 failures, indicating that the failure mode applied
to less than the entire fleet of turbopumps. Recommendations were made to Project Eagineering
that the turbopump vendor and the bearing vendor should review their processes to determine if
anything had changed, either in the process, the material, or the assembly. Initially, no change
was found that supported the batch hypothesis.

84 TWO MONTHS LATER — BATCH IDENTIFIED

At this point in the analysis there were seven confirmed and two unconfirmed failures. It
was observed that the serial numbers of the failed pumps were all quite high, ranging from
No. 671 to No. 872 in the sample of approximately 1000 pumps. The closeness of serial numbers
aupported the hypothesis that this was a batch problem. If it is assumed that the batch started
at the first failed part, Serial No. 671, and extended to the latest pumps produced, the Weibull

equation generated fewer than nine failures. By iterating, it was found that by starting at Serial’ :
No. 650 nine tailures were generated, corresponding to the seven observed and two unconfirmed i
failures. (See Figure 6.2.) This indicated there were about 353 pumps in the bhatch.

6.5 RISK PREDICTION

A

With a serious problem involving approximately 350 pumps, the next step was to forecast
the number of failures which could be expected in the near future. The risk analysis was
performed using the methods described in Chapter 2, and was limited to 353 suspect pumps.

The total operating tim- M engines is kept in a data system that is updated monthly. It is
also knewn that each pump . :cumulates an average of 25 hours operating time per month. The
risk analysis is illustrated in Figure 6.3. With the 353 pump times for the Weibull curve in
Figure 6.2, a cumulative total of 9.17 failures can be calculated for the “now” time using the .
method explained in Chapter 3. Increasing each pump’s time by 25 hours and again
accumulating the probabilities of failure, the value of 12.26 was obtained. The delta between
9.17 and 12.26 indicated that approximately three more failures were expected in the next N
month. This analysis covered 24 mouths of operation and the results are presented in Table 6.1. '

As the forecast indicates, almost all of the suspect lot was éxpected to fail within a little
more than two years. This was obviously a sericus problem if the analysis was correct.
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TABLE 6.}

Time (Hr)

PROJECTED PUMP FAILURES

FD 238533

Cumulative
Failures Forecast Future Failures
9.17 0.0 More Failures In 0 Months
12.26 3.12 More Failures In 1 Months
16.22 7.08 More Failures In 2 Months
2114 11.98 More Failures In 3 Maonths
27.18 18.02 More Failures In 4 Months
34.50 26.93 More Failures In 5 Months
45.21 34.05 More Failures In 6 Months
53.44 44.27 More Failures In 7 Months
65.24 56.07 More Failures In 8 Months
78.88 69.48 More Failures In 9 Months
93.64 84.47 More Failures I 10 Months
110.14 100.97 More Failures In 11 Months
128.01 118.85 More Failures In 12 Months
147.11 137.94 More Failures In 13 Months
167.21 158.05 More Failures In 14 Months
188.08 178.91 More Failures In 15 Months
205.40 200.24 More Failures In 16 Months
230.82 221.66 More Failures In 17 Months
951.89 242.73 More Failures In 18 Months
%i2.07 262.90 More Failures In 19 Months
290.78 281.58 More Failures In 20 Months
307.32 298.16 More Failures In 21 Months
321.27 312.11 More Failures In 22 Months
332.29 323.12 More Failures In 23 Months
340.34 331.18 More Failures In 24 Months
g = 594 g = 462.2 N = 353
98
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Based on this analysis, it was recommended 1o Project Engincering that turbopumps
No. 650 and up with more than 175 hours of {ime be replaced in the fleet. Fortunately, there
were sufficient spare turbopumps to allow this to be aceomplished without grounding aircraft,
In addition, this would not have heen passible without the knowledge of the relatively low risk
between 0 time and 200 hours. This action was effective as there were no more field failures.

Laboratory analysis of the failed pumps indicated that the failure mode was caused by
swelling of the plastic ball bearing cage to the extent that the balls would skid, causing the

bearing to fail. Coordinating with the turbopump manutacturer, the bearing manufacturer, and -

the plastic manufacturer, a statistical factorial experiment was designed to determine the cause
of the swelling of the plastic cages for corrective action.

6.6 FOUR MONTHS LATER — FINAL WEIBULL PLOT

Inspection of the turbopumps replaced in service (Number 650 and up with 175 hours or
more) revealed 15 more bearings considered to be imminent failures. The addition of these
failures to those vriginally seen in the field produced the final Weibull plot with 24 failures in a
sample of 387 turbopumps (Figure 6.4). Note that the original three-failure curve is a good
approximation of the final plot, the only difference being that the earlier curve had a steeper
slope (10 rather than 4.6) as indicated on Figure 6.1. Although this slope difference sounds large,
in fact, the inference from either curve would be sulistantially the same, that is, a rapid wearout
problem. The second Weibull based on seven failures was also a good approximation of the final
Weibull (Figure 6.4).

By this time the results of the statistically designed factorial experiment were available. It
was found that a process change had been made in the manufacture of the plastic cage to reduce
costs. The change resulted in cages of lower density. When these lower density cages were
subjected to the combination of heat, fuel, and alcohol, the alcohol diffused through the plastic
causing it to swell and crack. All such cages were removed from service. (Alcohol is a de -icing
agent added to jet fuel.) ‘

6.7 EXAMPLE 22 MAIN GEARBOX HOUSING CRACKS

The main gearbox housing on some engihes developed cracks in the field. This type of

__crack would usually be discovered during an inspection for oil leaks. Cracked housings were-

being discovered at a rate of 1/20,000 hours of operating {light time. This was a ruggedly built
gearbox housing, and it was questioned whether each crack was one of a kind or whether they
were related events. Also, this identical gearbox was being introduced into a new aircraft, and it
was questioned whether the same failure mode would appear in the new installation.

6.8 INFORMATION AVAILABLE FOR ANALYSIS

Once the field was alerted to cracked housings, a quick inspection revealed 27 cracked
units. Of the 27, four housings were from the new aircraft.

At the outset, there was considerable discussion as to whether the data should be grouped
together or a separate analysis should be completed for each aircraft type. Because of the
different missions of the two aircraft, it was decided that separate analyses should be run. The
Weibull analysis is presented in Figure 6.5 for both Aircraft 1 and Aircraft 2.
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Figure 6.1 Weibull Plot for Au,t'm«'nlnr.I'ump
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Figure 6.5. Main Gearbox Housing Cracks
At the time of the analysis, there were 23 cracked housings out of 1,526 in the Aircraft 1
fleet. From Aircraft 2, 4 out.of 213 engines in the field were found with cracks in the housings.

Both curves represented wearout modes, with Aircraft 2 having tanluree occurring earlier and at
a faster rate (i.e., steeper slope).
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One additional item which should be noted, especiatly in Aiveradt 1 is that the data do not
fall on a straight line. Ordinarily, data of this nature indicate that there may be more than one
made of failure. However, leaks and cracks of this type do not usually result in engine failure
and are not discor 2red until an inspection is performed. The run time on the conmponent at the
time of the leak or crack is usually not well defined, and the Weibull is distorted by the
; clustering of events discove.ed at inspection. This would be especially true if the time between
’ inspections is large but occurring at specific times. One way to correct for this type of analysis
problem is to correct the data back to a common crack length. However, the correction factor
often comes under question and the easiest way to avoid this argument is to present the data as

they are obtained.

8.9 RISK ANALYSIS

A risk analysis for forecasting future failures was requested. This analysis used methods
h discussed in Chapter .. The results of the analysis are presented in Figure 6.6 for both aircraft
through 1982, It can be seen that Aircraft 2 has a lower characteristic life than Aircraft 1. This
finding led to an investigation to determine if there were differences between the two aircraft
which would account for the difference in characteristic life. Strain gages and vibration pickups
were placed on gearboxes of each aircraft and data were obtained. It was concluded that Aircraft
2 was subject to more vibratory stresses which shortened the fatigue life of the gearbox. This
waortld explain the steeper Weihull slope for Aircraft 2.

v_!OOr—

Assumptions

90 }- » Sept G/8 Fleet

o 27 w/G/B/Month

* Weibull Fasure Destribution

80 - 2 Weibults

Number of Cracks

Cumulative
o
-]

o i I ]
80 | 81 | 82 -
Calendar Year LR S

Figure 6.6. Cumulative Main Gearbox Housing Cracks
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6.10 DETERMINING THE FIX

The fix for this problem was a fairly simple one. The cracking originated in the coverplate
of the gearbox. The driving force was a coverplate resonance at certain engine speeds. The
coverpiate was redesigned not 1o resonate at these frequencies, thus eliminating the problem.

6.11 HOW GOOD WERE THE FORECASTS?

" Because of the time lag from problem definition to the incorporation of a fix, addiiional
tailures may occur. This presents an opportunity to evaluate how well a forecast did and to
monitor the effects of sample size on the Weibull parameters.

“This problem was tracked for two vears afier the original analvsis was complete. The
findings ol the initial analvsis considered 23 cracks for Aireraft | and four cracks for Atreraft 2.
The analysis was repeated several times for each aireraft as more information became available.
Results of the follow-on analyses are presented in Table 6.2,

TABLE 6.2 FOLLOW-UP ANALYSIS RESULTS

n

Date No. of Engines No. of Cracks o] (hours)
Aircraft 1
Original . 1526 23 ' 1.736 78783
12 mo. later 1609 41 1.782 6552.8
24 mo. later 1949 62 1.715 7038.0
Aircraft 2
Original 213 4 2.842 7115
12 mo. later 500 10 2.348 1533.7
24 mo._later 732 i3 1.805 1604.8

With the large number of cracks associated with Aireraft 1, the Weibull is stable. However,
Aircraft 2’s Weibull has changed considerably. This is typical and is discussed extensively in
Appendix F. The risk analysis reflects the type of conservatism that would be expected from the
results of the initial analysis. The sieepness in the slope would cause an overprediction of the
expected number of cracks. Fromn a risk viewpoint this could be considered as safety margin.
However, hefore any action is taken to incorporate an eigineering change to correct the
problem, an analysis must also be perforined to determine the cost effectiveness of the change.

6.12 EXAMPLE 3: OPPORTUNISTIC MAINTENANCE SCREENING INTERVALS

Often ias turbine engines are sent to the shop because of unexpected hardware failures or
foreign ohject damage. Although the primary concern is the repair of the engine, the que. *ion
also arises should the engine undergo its next scheduled maintenance while it is available i1 1ae
shop. The answer is based on economic considerations and depends on how close the engine or
its modules are to the next scheduled inspection.

For example, if an engine is in the shop for repair after 1340 cvcles of operation and is due
for a scheduled irspection at 1350 cycles (one cycle heing equal to about 0.8 hour of engine flight
time), there would be no question that it should be inspected before re-installation in the
aircraft. If, however, the engine is in the shop at 1150 cycles, it is not so obvious that the 1350
cycle inspection should be pertormed. If the engine is in the shop at 500 cycles, it obviously
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should not be inspected (costly part replacements are involved). There is, therefore, a break-
even point to be determined.

6.13 STRUCTURING THE PROBLEM

‘The trade 10 be made considers avoiding a scheduled engine removal versus.the scrapping
of parts whase life is not quite used up. The opportunistic use of an unscheduled engine removal
to perform the scheduled inspection and replacement of life-limited parts not only allows saving
the labor involved in engine removal and replacement but also alluws the purchase of fewer
“pipeline” spare engines and modules. These savings are weighed agzinst tae added costs
incurred by replacing parts early.

6.14 FINDING THE OPTIMUM INTERVAL

Monte Carlo simalation is the method preferred for evaluating the range of opportunistic
maintenance intervals, ‘T'he U.S. Air Force has such a simulator which (with some maodification)
could be used for determining the optimum opportunistic maintenance interval. The simulater
is structured to perform scheduled maintenance whenever the Monte Carlo process selects an
unscheduled engine removal which falls within a predefined screening interval. The process is
repeated for various screening intervals, and the resultant total support cost is plotted against
the selected screening intervai to determine the optimum. Figure 6.7 is an illustration of this

procedure,

The Weibulls are used to describe each of the engine modules’ major failure modes (reason
for unscheduled removal). Where improvements have been incurporated, the Weibulls are
adjusted to reflect the improvements. Only with a valid representation of the way in which each
removal cause varies with time could a realistic assessment be made.

‘The simulation analysis was performed and an opportunistic maiarnnance interval of
300 cveles was determined. This provided the Air Force with an economic decision criterion for
periorming scheduled maintenance.

6.15 EXAMPLE & SUPPORT COST MODEL

The support cost model uses a Monte Carlo approach to simulate the interaction of
scheduled and unscheduled maintenance events. The unscheduled events are entered ir the
form of Weibull curves relating event, probability, and time. Scheduled events are entered at
specific times. A screening interval is input to define a time period during which scheduled
events can be precipitated by unscheduled opportunities. (See Figure 6.8.) Lahor and material
costs are input for each event. The model selects corresponding labor and material costs for each
event and compiies totals for the number of events and for labor and material costs by report
period (year). Totals are divided by the number of flight hours for the report period to derive
rates per flight hour. :

The model makes a predesignated number of passes through the life cycle (20 years) and
reports the average of the passes by report period. The number of events per year can therefore
appear as a non-integer.
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Unscheduled  maintenance events, input as Weibulls, are of four basic types: 1)
unscheduled engine removals (UEKR's), 2) unscheduled module removals which are coincidental
with- an engine removal (coincidentals), 3) unscheduled part removals which are coincidental
with a module removal (part coincidentals), and 1) installed maintenance évents. As stated
above, each of these event inputs is accompanied by a corresponding labor and material cost. It
is also accompanied by factors which designate those percentages of events which precipitate
engine o7 module depot visits and demands for spare modules.

Scheduled event input is also accompanied by labor and material costs per event. Material
. is input as a total cost of parts involved in the inspection along with 2 percentage to be scrapped.
at each event. This scrap rate can vary among the events of a particular sequence.

The input is then a combination of Weibulls, scheduled intervals, material and labor costs,
depot visit factors, and supply system demand factors. Outpu: is reported at the module (failure
mode) level, by report period (year), in terms of total quantities and rates per flight hour.
Parameters reported include engine removal and depot visits, module removals and depot visits,
module demands, labor and material costs broken down by depot and base, and scheduled vs
unscheduled maintenance ior each report period and for the total life cycle.

6.16 ROLE OF THE WEIBULL

Unscheduled engine maintenance, as indicated above, is driven by both scheduled and
unscheduled events. The unscheduled events are caused by som~ failure modes that occur
randomly and others that exhibit wearout characteristics, i.e., an increasing failure rate. The
Weibuil is the most convenient method of introducing these increasing rates into the model.

‘The Weibull is described by only two parameters, the characteristic life, 5, and the slope, 5.
Figure 6.9 illustrates the use of Weibulls with g >» 1 for life limited purts and ¢ = 1 for randomly

distributed failure modes. Infant mortality, although seldom encountered in an operational
engine, can also be simulated by § < 1.

Random (8 = 1)

i
i
!
i
i

Characteristic
Life

FD 256545

Figure 6.9. Unscheduled Maintenance Input via Weibulls
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6.177 EXAMPLE 5: VANE AND CASE FIELD CRACKS

Cracks found in the 12th stage vane and ease of a high pressure compressor precipitated
this study. There was concern of case rupture if the cracks grew large enough to weaken the
structure, The major questions were: )

(1) How will the problem affect engines?

(2)  What can be done to fix the problem?

(3)  Can the problem he detected through inspection?

(4}  What recommendations should be made to the Air Force?

6.16 RESOLVING THE QUESTIONS

Seven cracked cases were iacntified. The cracks were all of different lengths but shorter
than considered critical. One question which often arises frov this type of analysis is whether to
normalize the times to a constant crack length. It was decidet. to proceed without the corrections
on the times and construct a Weibull from the available information. Figure 6.16 is the Weibull
bascd on seven cracked cases. ' :

‘The rate at which the fleet would run into this problem was then examined. [t was assumed

that all engines were susceptible and that the crack could be detected upon inspection. These 4

cases would be repaired by welding, and the units would be placed back into operation. This
inspection and repair could be continued until a fix was in place. The more permanent fix was to
hardcoat the area of the cracking with a plasma sprey. It was also assumed that the fleet would
accumulate an average of 27 hours per month on each #ngine.

The engine would normally undergo inspection at 1350 cycles. This is equivalent to abeut
1080 hour of engine operation. .

With these assumptions and assuming that the hardcoat fix would be upplied to all new
engines, the number of unscheduled engine removals due to this problem was projected using
methods described in Chapter 3. The results are illustrated in Figure 6.11. The forecast of 10 or
more engines develop g cracks by the end of the first vear and the total reaching about 40 by
the end of the following year resulted in implementation of the hardcoeat fix.

€.19 CONCLUDING REMARKS

The plasma spray hardcoat has been incorporated into production units. In addition, as old
units are received for their normal overhaul, hardcoating is applied to these units as well. At this
writing, a total of only 15 engines have been identified with cracks over the critical limit where it
could be said from the forecast that 40 additional engines would have been expected without the
fix. The quick action by the Air Force to implement the fix resulted in correcting the condition
in the field.
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CHAPTER 7

CONFIDENCE LIMITS AND OTHER ASPECTS OF THE WEIBULL

7.1 FOREWORD

Now that some familiarity has been developed with the Weibull distribution and its
application in risk analysis and life testing, further applications will be discussed. First among
these will be confidence intervals about the Weibull parameters 3 and n and about the Weibull
line. Secondly, special applications in risk analysis will be discussed, namely Weibull
*“Thorndike” charts. The next topic to be discussed will be shifting Weibulls in the case of
insufficient information about the underlying population. Lastly, other options available when
the Weibull distribution may not fit the failure data will be discussed.

7.2 CONFIDENCE INTERVALS

Confidence intervals are measurements of precision in estimating a parameter., A
confidence interval around an unknown parameter is an interval of numbers derived from
sample data that almost surely contains the parameter. The confidence level, usually 90¢. or
higher, is the frequency with which the interval calculation method could be expected to contain
the parameter if there were repeated applications of the method.

7.3 CONFIDENCE INTERVALS FOR 3 AND g

Often it is of interest to determine how far from the “true” value an estimate of g or 3

might deviate. For example, if the times to failure of every bearing ever made and every bearing

to be made in the future were known, it would be pcssible to calculate g and 5 exactly. But, of
course, this is never the case; only a sample of hearings is available. The question is: how much
variation can be expected in the estimates of g and 5 (g and 5) from one sample size to the next?
If this variation is small, then the particular sample will yield estimates close to the true values.

The problem involving censoring witn very few failures is not dealt with here. Reference V
is recommended for this situation. However, for large, complete (no suspensions) samples of size
n, the confidence intervals for g and n can be approximated by equations (7.1) and (7.2),
respectivaly.

fexp (ﬂf_f) =8 =fexp (&7\%1"—) - @

7
—1.057,, 1.05Z,, )

fexp (-7\/—T) =n s?exp (T\/E_ . {(1.2)

where Z o, the upper «/2 puint of the standard normal distribution, depends on what
confidence level is chosen. Table 7.1 gives Z,,, for various (usual) confidence levels.

TABLE 7.1. CONFIDENCE LEVELS

Confidence Level . Z,
99% ’ 2.576
95% 1.960
%% 1.645

'Y Apolied Life Data Analysis, Nelson, 1982,
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These confidence intervils are only spproximate since: (1) the estimates of § and n used are

! 4 linear regression estimates (from a theoretical standpoint maximum likelihood estimates would

Example 7.1

j be required, see Appendix Dj, (2) these estimates are only approximately normally distributed.

| Figure 7.1 shows a fitted Weibull distribution with 45 failures and no suspensions. A 90,
' confidence interval for g is desired. The relevant information is as follows:

= 45
- A iaa

Confidence level =
7. - 1645 (rom Tab!ﬂ 7.1)

Substituting into equation 7.1,

—0.78(1.645)

which reduces to 1.52 < g < 2.23

1.84 exp (

‘Example 7.2

__ﬁ<184ex)(07

8(1.645)

Ve

Using the Weibull from Figure 7.1, what is a 90 confidence intervul for n? The relevant

information is:

n =45

A 95888, 1 = 1.84
Confidence level = 90'.

Z..;2 = 1.645 (from Table 7.1)

Substituting into equation 7.2,

1.05(1.64

YN

or, 833.7 < 9=1102.9

958.88 exp (——LO5(LE45) ) < n < 958.88 ex

111

1.05(1.645)
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7.4 CONFIDENCE INTERVALS FOR RELIABILITY

. Another problem that appears in Weibull analyses is that of obtaining contidence intervals
for the reliability at a given point in time. The reliability at the point t' is the probability of a life
of at least t’ units, and will be denoted by R(t). Again assume a large sample with no censored
ohservations.

The procedure is as follows:

I. Computet = (fn(t) — 2n(N8 | (7.3a)

2. Compute Var (§) = [ 1.168 + 1.10 (@) - 0.1913 8- —rl-x- | (7.3b)

3. Cbmpute u, = o- 2., |Var(ml”2 _ (7.3¢)
u, = &+ Z,,,.,|Var(ﬁ)|"2 (Z,/; from Table 7.1)

4. Then the confidence interval is: exp (—exp (uy)) < R(t") <exp (-exp (ixl)) (7.3d)

Example 7.3

Again using Figure 7.1, a 90*, confidence interval for the reliability at 700 cycles is desired.
The step-by-step procedure follows:

1. ¥ = (@n(700) - 2n(958.88)) 1.84 = —0.579

]

Var (3) = [ 1168 + (~0.579)%(1.10) - 0.1913 (~0.579)] - = 0036
3. uy = —0.579 - (1.645) \/0.036 = —0.890
up = ~0.579 + (1.645) 1/0.036 = ~0.268

4. exp (- exp (-0.268) ) < R (700) < exp (—exp(-0.890) )
. _____ Therefore, the confidence interval is 0.465 < R(700) <0663
7.5 CONFIDENCE INTERVALS ABOUT A FAILURE TIME

Engineers are often interested in a confidence interval for the time associated with a given
failure. This confidence interval can be approximated by equation (7.4). Ninety percent
confidence intervals will be assumed for all confidence intervals about the Weibull line in this
section.

1/

1,005 = g [Qn-l—__—Flm] , b, 0.95 = n[Qn—l—__—T.lm)—]l."'. 1.4)

where t;, 0.05 and t,, 0.95 are the failure times associated with the it failure and F; (0.05) is the
5% rank assocmted with the it? failure, while F; (0.95) is the 95 rank assocxated with the itf
failure. Tables for F; (0.05) and F; (0.95) are in Appendlx B.
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Example 7.1

Suppose we are given the Weiboll in Figuee 7.2, 4 20,9 100 hours, produced from 10
failures. The caleulation procedure for the conlidence interval about the fiest failure (26,1 hours)

follows:

F, (0.05) 0005 (from Appendix B)
1,005 = 100 [enr——go] * = 100 [0.00501)" | N
= 7.08 hours -
F,(0.95) = 0.258 (from Appendix B)
1 ' . 1/2
t5,0.95 = 100 [en——p=z] * = 100102084

= 54.63 hours

7.6 CONFIDENCE BANDS ON THE WEIBULL LINE

In Section 7.4 the confidence bands ahout a single reliability were calculated. Simultaneous
confidence bands can also be placed on the Weibull distribution for complete samples.
Reference® contains the basic information for their construction. The resul‘s in Reference®
have been extended to the Weibull Distribution. Equation (7.5) together with Table 7.2 can be
used to caleulate 90 confidence bands about the Weibull Distribution.

(F(x) ~ K(n),F(x) + K(n)),

where

Fix) =1-—e »u/-r" o
(7.5)

and F(x) is the estimate obtained by substituting maximum likelihcod estimates for the
parameters.

2 uAn Approach to the Construction of Parametric Confidence Bands on Cumulative ['stribution Functions,”
Srinivuap and Kanofsky, Biometrika, Vol. 59, 3, 1972
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Figure 7.2, Weibill Plot Where 8 = 2.0 and n = 100 for 10 Failures
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TABLE 7.2, CONFIDENCE
BOUNDS ON THE
WEIBULL LINE

Sample Size {n) K(n)
3 0.540
4 0.420
| 5 0.380
6 0.338
N 7 0.307
\ 8 0.284
9 . . 0.269
10 0.246
n . : 0.237
12 o 0.222
13 0.213
14 0.204
15 0197 |
20 0.169 1
25 0.152
30 0.141
| 35 0.125
| 40 0.119
45 0.117
50 0.106
5 , 0.086
100 0.074

Example 7.5

= Consider the Weibull in Figure 7.3, 3 = 2.0 and » = 2000 hours, with a sample size of 7.
From Table 7.2 the critical value of K(7) = 0.307. Therefore, . . .

1 — e (X/2000°° _ 0307 < F(x) < 1 —e~(X/20005"" 4 307

forall x, 0 < x < oo, with 90, confidence.

‘These bands are illustrated in Figure 7.3.
7.7 WEIBULI. “THORNDIKE” CHARTS

' A graphlcal method often used to determlne the cumulatlve probabllmes of the Poisson \
distribution was named for F. Thorndike and is illustrated in Figure 7.4.

A random variable x has a Poisson distribution with a parameter u if P(X = x) = exp (— )

Axlx=0,1,23,....). (The Poisson distribution also arises u#s the limiting form of the

‘binomial when the samjle size becomes large.) As an illustration, suppose it is necessary to rake

the statement: the expected number of occurrences is 3.0, and the actuai number of occurrences

will be hetween x and y with 0.90 probability. To find x and v, use the Thorndike chart in

Figure 7.4 enter the x — axis at 3.0 and read up to the point wk._.e 3.0 intersects ihe 6.05 and

0.95 lines extending from the y - axis. The values for “C” are found to be about 0 and 6.0

o respectively. Therefore, with probability 0.9, if the expected number from a Poisson distribution
is 3.0, less than 6.0 will occur.
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Figure 7.3. Example of Confidence Bands on a Weibull Line
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A4

In this same wav a graphical technigue simitar to the Thorndike chart has been developed
for tie Weibull distribution; These charts give the probahitity of having “(*" or fewer failures by
anrv given time, Thev ean also be used 2o place bounds about the number of failures accurring by
a given time,

Figures 7.5 through 7.12 are Weibull Thorndike charts for #4's of O.5, 1.0, 1.5, 2.0, 2.5, 7.0,
1.0, and 5.0. To use these charts, determine the time (1) of interest (possibly the inspection
time), calculate t/n (n is the characteristie life from the Weibull), enter the x - axis of the chart
with the closest 8 to the une of interest, and then read the probability of having “C” or fewer
failures. Several examples of this technique and other uses follow.

‘The usefulness of this information can arise, for example, when the inspection interval is
two or more times the characteristic life of the Weibull failure mode of a part. When this
happens, the part fails, is replaced (made “good as new”), fails again, is replaced again, etc. How
often can this process continue? The Weibull Thorndike charts answer this question.

Example 7.6

Given Weibull parameters g = 1.5 and 5 = 3000 hours, the probability of havirg three or
fewer failures per unit by 6000 hours is to be calculated.

in this case, t/n - 6000/3000 = 2.0, and 8 = 1.5, 8o using Figure 7.7, enter the x - axis at t/n -
- 2.0 and proceed up to the point where the line “C = 1" is intersected. Then the probability of
observing 3 or fewer failures can be read froin the v - axis as 0.93,

Iz‘xamplt' 7.7

S!uppose B - 1.b and now t/n = 3.0. A 0.90 probability band can be placed about the
number of failures occurring by t/p = 3.0.
i
Afgain using Figure 7.7, ent °r the x - axis at 3.0 and proceed to find the “C” values where
0.05 and 0.95 probabilities intersect. This yields 1 and 5, respectively. .
t

e
Example 7.8
i

In spare parts provisioning, suppose the number of spare parts to be provided are required

for a part having a § = 3.0 and an inspection time/characteristic life ratio «t/y) = 2.0. The

menager wishes to Le 90 confident that he will not run out of parts. Using Figure 7.10,
entering the x - axis at 2.0 aad proceeding to the point where 0.9 on the y - axis intersects the
*C" lines, no more than two spare parts are needed per delivered part.

Example 7.9

A new design rotor bearing has been tested for 22,000 hours. The current rotor bearing has
a limiting failure mode whose 3 = 1.7 and » = 4,937 hours. Six failures have been observed in the
test of the new desigr: due to this mode. Is this unusual? With a t/; ratio = 22,000/4,937 = 4.45,
entering the Weibull Thorndike chart for g = 1.5 (Figure 7.7), the probability of having six or
more failures is approximately 1.0 - 0.90 = 0.1. Entering the Weibull Thorndike chart for g = 2.0
(Figure 7.8) the probability of having six or more failures is approximately 1.C - 0.92 = 0.08.
Therefore, it can be stated that the probability of observing six failures by this time in the
redesigned rotor bearing is from 0.08 to 0.10. Hence the redesigned rotor bearing is not as gnod
as the current bearing.
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7.8 SHIFTING WEIBULLS

In all that has been done up 1o this point Weiball failure distributions have been estimated
from observed failures, often in combination with the populations of unfailed units. What can be
done i the times on each failure are known but the times on the popuiation of unfailed units are
unknown?

This problem arises in the failure analysis of data from jet engines because all parts in an
engine are not serialized; that is, the time on the individual parts cannot be tracked. In many
engines only the most important 400-500 parts are serialized, while the others (possibly as many
as H0,000) are not. :

Of course, if the part failure times are known, the engineer can generate a Weibull
distribution from the failures only, using the methods in Chapter 2. Fred Dauser, Statistician,
Commercial Products Division, Pratt & Whitney Aircraft Group, United Technologies
Corporation, developed a method to “adjust” this Weibull if the number of unfailed units in the
population is known.

An outline of the method is as follows:

1. Plot the failure data on Weibull probability paper.

*a

2 Istimate the Weibull parameters 3 and n.

3 Calcﬁlate the mean time to i"ailhre‘ (MTTF),

-,

¥ times to failure for each part

MTTF - No. failures ’ (7.5)

(now refer to Figure 7.13).
4.  Draw a vertical line through the MTTF.

5. Calculate the proportion failed in the total population, No. failures/(No.
failures + No. suspensions), calculate the cumulative ‘. failed point = (1 —
e Proportian) 5 100, and draw a horizontal line from this point.

At the intersection of the vertical and horizontal lines draw a line parallel
to the failure distribution. This is an estimate of the “true” Weibull
\ distribution.

s

i

.'.tamp%c 7.40

| ' -
Suppose there have been four flange failures with times of 1165, 1300, 1393, and 1493
cycles in a population of 2500; however, the times on the unfailed units are unknown. The
procedure to estimate the “true” Weibull distribution can be used:

Steps 1.and 2: Seé'Figure 7.14, 8= 9.53, 3 = 1400.7 cycles
St p'3: -

MTTF = 1165 + 1300 -: 1393 + 1493 _ 1337.8
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RIx N

Nao. faitures/(No. failures + No. suspensions) — (1/2000) - 0.0016

Therefore, cum * failed 1 o "M% 00 06
Steps 4, b and 6:

See Figure 7.15

The estimated distribution has a B = 9.53 (same as the four failure Weibull), but the
~haracteristic life is now = 2629 cycles..

7.9 WEIBULL GOODNES3 OF FIT

The procedure to test whether a sample is from a specified Weibull distribution can be
given in terms of the confidence bounds about the Weibull line developed in Section 7.6. Again,
complete samples will be assumed.

Procedure:
1.  Using the Weibull estimates of 3 and 5 for the failure distributions,
calculate and plot the confidence bounds using the techniques of Section:

7.6.

Now place the hypothesized Weibull on this same plot, as a dotted line.

o

3. If this dotted line does not lie entirely within the confidence bands, then
consider the sample to be from a different Weibull distribution.

Example 7.11

Given a sample of seven failures with 8 = 2.0, = 2000, as in Section 7.6, can the
hypothesis that the sample comes from a Weibull distribution with 8 = 4.29 and n = 1500 be

rejected?

Plotting the hypothesized Weibull as a dotted line on Figure 7.3 gives Figure 7.16. One
would have to reject the hypothesis that this sample comes from a Weibull distribution with g =
4.29 and 5 = 1500 since the dotted line does not lie entirely within the bands.

7.10 COMPARING THE WEIBULL TO OTHER DISTRIBUTIONS

Figure 7.17 shows what happens if failure data from log-normal, normal, and extreme-
value distributions are plotted on Weibull probability paper. Since the log-normal is the most
frequent alternative in failure analysis, this will cover most of the practical cases that arise. For
example, suppose two plots like those on Figure 7.18 are given. In this case, the eye is unable to
discern which is “best,” the log-normal or the Weibul}. The statistical test from Reterence'® can
be used to discrimirate between these two failure distributions. The test can be set up in two
ways: to favor the log-normal or to favor the Weibull.

9 “Discriminat.on between the log-normal and Weibull Distributions,” Dumonceaux and Antle, Technometrics;, Vol.

15, 4, 1973.
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Favoring the Weibull, caleulate

W 2ree®) " 0] P4 00,0

T (7.6)
2 3(“"‘5'#‘2 . .
» = —— n is sample size
A 1. . . ‘g
u= ‘,T-Q“'-s- t; is the time of failure

and 1(t) = -g— (*;"—)‘ ‘e " the Weibull probability density function

W is compared 1o the appropriate table value for the confidence level desired (Table 7.3) and, if
W = W e the Weibull is rejected in favor of the log-normal.

TABLE 7.3, CRITICAL VALUES FOR TESTING

' THE DIFFERENCE BETWEEN LOG
NORMAL AND WEIBULL
(FAVORING THE WEIBULL)

Namber of Confidence Level
Failures 80% 90% 95%
20 1.008 1.041 1087
0 0.991 1.019 1.041
40 0.980 1.005 1.0268
50 0.974 ~ 0.995 1.01€

Favoring the log-normal, calculate

W = (22efM™) " (t,00)]t0(t)] ... JtLE )" )

(]
and compare to the appropriate table value for the conﬁdence level desired (Table 7.4) and, it W
= Wi, e the log-normal is rejected in favor of the Weibull.

TABLE 7.4.. CRITICAL VALUES FOR TESTING
THE DIFFERENCE BETWEEN LOG
NORMAL AND WEIBULL -
(FAVORING THE LOG-NORMAL)

Number of * Con'idence Level
Failures 80% 9% %
20 1.015 1.038 1.062
30 0.993 1.020 : 1.044
40 0.984 1.007 1.028
50 0.976 0.998 1.014

Ixamplé 7.12
The coverplate failures that went into the plots in Figure 7.18 occurred at 1989, 2160, 2569,

2758, 2813, 2979, 3016, 3283, 3294, 3503, 3853, 3916, 4294, 4462, 5178, 57186, 5984, 6378, 6556, and
7000 cycles. The estimated Weibull parameters sre 3 = 3.26, #= 4523.8. The estimated log-

136




AL AT ATV Y=~ -

-

e T

———— e i o o -

A T S T
normal parameters are g 820014, » 0373003 Which failure disteibution fits the data better
with 80, confidence?

Both tests, favoring first the Weibull and then the log-normal, will be performed.

Favoring the Weibull, using equation (7.6),

W = [2(3.141592) (2.71828) 0.373093Z) "V/2 ({1989 f (1989)] ... {7000 [ (7000)] ) ~V/20
U= 1039

compared to a table value of 1.008. Hence, reject the Weibull.

Favoring the log-normal, using equation (7.7),

W = [2(3.141592) (2.71828) 0.3730932]*1/2  ([1989 f (1989)] ... [700 f (7000)] ) *¥/20
= (0,962 .

compared to a table value of 1.015. Therefore, since the value W in the test that favors the
Weibull = W,,,.., the Weibull can be rejected in favor of the log-normal. This same decision is
reached in the test favoring the log-normal; in this case, qmce W < W, i the log-normal
cannot be rejected in favor of the Weibull.

In conclusion, the log-normal failure distribution seems to describe this coverplate failure

mode better than the Weibvll distribution.

7.11  PROBLEMS

Giiven a Weibull derived from 40 data points with g8 = L5, 3 = 2000 hours; what
are the 90, confidence intervals for 8 and 2?

What is the 90, confidence interval for Reliability at 1500 hours in problem 17

What are the 90‘; confidence intervals about th2 first three failures in problem
1?

Given a Weibull with parameters g = 1, » = 1000 hours, what is the 90°..

~ probability band on the number of failures to be expected by 4000 hours?

A 10 point Weibull of failures only was generated and is illustrated in Figure
7.19. These failures are of a non-serialized part with a total population size of
2000. Adjust this 10 failure Weibull for the entire sample size. Note: failure times
are 51, 79, 116, 164, 197, 230, 232, 327, 414, and 451 hours.

Are the Weibulls in Figures 7.20 and 7.21 significantly different? Assume the
Weibull in Figure 7.20 is true.

Solutions to these problems are in Appendix J.
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APPENDIX A
GLOSSARY

The parzmeter of the Weibull distribution that determines
its shape and that implies the failure mode characteristic

(infant mortality, random, or wearout). It is alse called the

slope parameter because it is estimated by the slope of the
straight line on Weibull probability paper.

The difference between the true value of a population
parameter and the grand average of many parameter
estimetes calculated from random samples drawn from the
parent population. Also called fixed error.

Data that contain suspended units.

Relative frequency that the (statistically derived) interval
contains the true value being estimated.

A mathematical function giving the cumulativa probability
that a random quantity (e.g. a component’s life) will be
less than or equal to any given value.

The characterisfic life of the Weibull distribution. 63.2%
of the lifetimes will be less than the characteristic life,
regardless of the value of 8, the Waibull slope parameter.

The instantaneous failure rate.

A failure mode characterized by a hazard rate that
decreases with age, i.e., new units are more likely to fail
than old units. :

A mathematical model of a systetn with random elements,
usually computer-adapted, whose outcome depends on the
application of randomly generated numbers.

Mean or average time between failures.

An unknown constant associated with a population (such
as the characteristic lice of a Weibull population or the
mean of a normal population).

The degree of agrc 2ment among estimates calculated from
random samples drawn from a parent population. The
precision is usually measured by the standard deviation of
the estimates.

A failure mode that i= independent of time, in the sense

that an old unit is as likely to fail as a new unit. In other
words, the hazard rate remains constant with age.
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- | 16,

17.

18.

19.

20,

21.

FETS

Reliability

Risk Analysis

Suspension

Wearout.

Weibayes/Weibest

Weti! all
Analysis

Weibull Plot

The probability that, when operating in the manner
intended, a system will perform its intended function
satisfactorily for a specified interval of time,

A prediction of the number of Gulures expected (o oceur in
some future time period.

A test or operational unit that has not failed by the mode
under consideration at the time of the life data analysis.

Zero age for the failure mode. It is known as the minimum
life paramete in the three-parameter Weibull
distribution: units havu zero probability of failure prior to
t,.

A failure mode characterized by a hazard rate that
increases with age, ie., vid units are more likely to fail
than new units. :

A method for constructing a Weibul] distribution based on
assuming a value of 8, the Weibull slope parameter. It is
used when there are certain deficiencies in the data (for
instance, when operating time has accumulated, but no
failures have occurred).

Procedure for finding the Weibull distribution that best
describes a sample of unit lifetimes, in order to estimate
reliability, determine f{ailure mode characteristics, and
predict the occurrences of future failures.

A plot of time-to-failure data on Weibull probabiiity »
paper. ‘
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. APPENDIX B

MECIAN RANKS, 5% RANKS, AND 95% RANKS

(e o ot ok

TABLE B.1. MEDIAN RANKS
-
Sample Size
Rank .
; Order 1 2 3 4 5 6 7 8 9 10
: i 1 50.0 29.2 20.6 159 12.9 10.9 94" 8.3 7.4 6.6
‘ 2 70.7 50.0 38.5 313 26.4 22.8 20.1 17.9 16.2
3 79.3 61.4 50.0 421 36.4 32.0 28.6 25.8
4 84.0 68.6 57.8 50.0 44.0 39.3 355
5 870 73.5 63.5 55.9 50.0 45.1
6 ) 89.0 7.1 67.9 60.6 54.8
7 90.5 - 798 71.3 64.4
8 91.7 82.0 74.1
9 92.5 83.7
: 10 93.3
: Sample Size
: Rank
t Order 11 12 13 14 15 16 17 18 19 20
t 1 6.1 56 5.1 48 4.5 4.2 3.9 3.7 3.5 34
! 2 14.7 13.5 125 117 10.9 10.2 9.6 9.1 8.6 8.2
i 3 3.5 21.6 20.0 18.6 174 16.3 1564 14.5 13.8 13.1
f 4 323 29.7 215 25.6 25.9 224 21.1 20.0 189 18.0
i 5 41.1 37 35.0 325 30.4 28.5 26.9 25.4 24.1 229
f 6 50.0 45.9 42.5 39.5 36.9 34.7 32 30.9 29.3 27.8
: 7 588 540 50.0 46.5 43.4 40.8 38.4 36.2 34.4 32.7
£ 8 67.6 62.1 574 53.4 50.0 46.9 44.2 41.8 39.6 37.7
. 9 76.4 70.2 64.9 60.4 56.5 53.0 50.0 47.2 44.8 42.6
10 85.2 78.3 72.4 67.4 63.0 59.1 55.7 52.7 50.0 475
11 - 838 86.4 .9 743 69.5 65.2 61.5 58.1 55.1 52.4
12 M3 87.4 81.3 76.0 71.4 67.2 63.6 60.3 57.3
13 4.8 88.2 825 775 73.0 69.0 65.5 62.2
: 14 . 25.1 89.2 83.6 78.8 4.5 70.6 67.2
i 16 95.4 89.7 84.5 799 758 72.1
! 16 95.7 90.3 85.4 81.0 77.0
H 17 96.0 90.8 86.1 31.9
i 18 96.2 91.3 86.8
; 19 96.4 91.7
: 20 9.5
Loa
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TABLE B.1. MEDIAN RANKS
Sample Size
Rank .
Order 21 22 23 24 25 2 27 29 29 3
1 3.2 3.1 29 28 27 26 2.5 24 2.3 2.2
2 78 15 7.1 6.8 6.6 6.3 6.1 59 5.7 a5
3 125 11.9 114 10.9 10.5 10.1 9.7 5.4 9.1 8.8
4 172 16.4 15.7 15.0 14.4 139 134 12.9 12.5 12.1
5 21.8 209 20.0 19.1 184 177 170 164 15.9 15.3
6 265 263 24.2 23.2 22.3 215 20.7 20.0 19.3 18.6
7 30.2 29.8 28.5 274 26.3 253 243 23.5 22.7 219
8 359 343 328 315 30.2 29.1 280 270 26.1 25.2
9 408 38.8 31 358 34.2 329 31.7 30.5 29.5 85
10 45.3 43.2 414 39.7 38.1 36.7 35.3 34.1 329 31.8
11 50.0 41.7 45.7 438 421 405 390 37.6 36.3 35.1
12 54.6 52.2 50.0 479 46.0 44.3 426 41.1 39.7 384
13 69.3 56.7 54.2 52.0 50.0 48.1 46.3 4.7 43.1 41.7
14 64.0 61.1 58.5 56.1 53.9 51.8 50.0 48.2 16.5 450
15 68.7 65.8 62.8 60.2 578 55.6 536 51.7 50.0 483
16 73.4 70.1 67.1 64.3 61.8 59.4 57.3 55.2 53.4 51.6
17 8.1 74.6 71.4 8.4 65.7 63.2 60.9 58.8 56.8 54.9
18 82.7 79.0 75.7 725 69.7 67.0 64.6 62.3 60.2 58.2
19 874 83.5 79.9 76.7 736 70.8 68.2 65.8 63.6 6L.5
20 921 88.0 84.2 80.8 716 74.6 71.9 f9.4 67.0 64.8
21 96.7 024 88.5 84.9 815 784 75.6 729 70.4 68.1
22 96.8 92.8 89.0 855 82.2 79.2 76.4 1738 71.4
3 97.0 93.1 894 86.0 82.9 79.9 772 74.7
b2 97.1 933 898 86.5 83.5 80.6 780
25 "2 93. 90.2 87.0 84.0 81.3
. 25 9.3 93.8 90.5 ‘87.4 84.6
27 974 94.0 80.8 87.8
4 28 975 942 911
29 97.6 94.4
30 9.7
¢
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TABLE B.1. MEDIAN RANKS
" Sample Size

Rank :

Order 31 32 33 M 35 36 37 38 99 46
1 2.2 2.1 2.0 20 1.9 1.9 1.8 18 1.7 L7
2 5.3 5.1 5.0 48 4.7 4.6 44 43 42 41
3 85 8.2 8.0 1.7 15 7.3 7.1 69 6.7 66
4 1.7 11.3 11.0 10.6 10.3 10.1 98 9.5 9.3 9.1
5 14.9 14.4 14.0 13.6 13.2 12.8 12.5 12.1 118 115
6 18.0 175 17.0 165 16.0 15.6 15.1 14.7 144 14.0
7 21.2 20.6 20.0 194 188 18.3 178 17.3 169 185
8 24.4 237 23.0 223 21.7 21.1 20.5 200 194 19.0
9 216 26.8 26.0 252 45 23.8 23.2 26 220 21.4

10 30.8 299 29.0 28.1 27.3 26.6 258 252 24.5 2319
n 34.0 329 320 31.0 30.1 29.3 285 218 27.1 26.4
12 37.2 36.0 350 339 33 32.1 3.2 . 304 296 289
13 40.4 39.1 380 368 358 348 339 330 322 314
14 436 422 410 39.8 35.6 376 36.6 356 4.7 338
15 468 45.3 440 427 415 40.3 30.2 382 372 363
15 50.0 484 470 45.6 443 43.1 419 405 39.8 388
17 63.1 515 50.0 485 47.1 458 446 434 423 413
18 66.3 54.6 529 514 50.0 486 413 460 49 438
19 59.5 57.7 55.9 543 52.8 51.3 50.9 486 474 46.2
20 62.7 60.8 58.9 57.2 55.6 54.1 526 51.3 50.0 48.7
21 65.9 63.9 61.9 60.1 58.4 56.8 55.3 539 525 512
22 69.1 67.0 64.9 63.1 61.3 59.6 58.0 56.5 550 537
23 723 70.0 67.9 66.0 641 = 623 60.7 59.1 57.6 56.1
24 75.5 73.1 70.9 68.9 66.9 65.1 63.3 61.7 60.1 586
25 78.7 76.2 73.9 71.8 69.8 67.8 66.0 64.3 62.7 61.1
26 8i.9 79.3 769 74.7 726 70.6 68.7 669 65.2 63.6
1 85.0 824 79.9 776 754 733 4 695 67.7 66.1
28 88.2 85.5 829 80.5 78.2 76.1 74.1 721 70.3 68.5
29 9.4 88.6 85.9 834 81.1 78.8 76.7 4.7 72.8 71.0
30 4.6 91.7 889 86.3 839 816 79.4 713 754 735
3 9.7 94.8 91.9 89.3 86.7 84.3 82.1 799 779 76.0
32 97.8 949 92.2 89.6 87.1 84.8 826 80.5 78.5
33 979 95.1 92.4 89.8 874 85.2 83.0 80.9
34 97.9 2 926 90.1 878 85.5 834
35 98.0 95.3 928 90.4 881 859
38 98.0 95.5 93.0 920.8 884
37 98.1 95.6 93.2 90.8
38 98.1 95.7 93.3
33 98.2 95.8
40 98.2
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TABLE 1.1.

MEDIAN RANKS

Sample Size

Order a 12 1 4 15 16 17 49 50
1 1.6 16 L5 L5 15 .4 14 14 14 L3
2 4.0 39 38 37 37 16 25 34 34 33
3 6.4 63 6.1 6.0 58 5.7 56 55 5.4 53
4 8.8 86 8.4 8.2 80 79 77 75 74 7.2
5 113 10 107 105 103 100 98 96 9.4 9.2
6 137 133 130 127 125 122 119 117 114 112
7 161 1567 153 150 147 143 140 137 135 132
8 185 181 176 172 169 165 162 . 158 155 152
9 209 204 200 195 191 187 183 179 175 172

10 233 228 223 218 213 208 204 200 195 192
1 258 252 46 240 235 230 225 220 216 211
12 282 215 269 263 257 251 246 241 236 231
13 306 299 292 285 219 213 267 262 256 2.1
14 339 322 315 308 301 294 288 282 217 211
15 354 346 338 23C 323 316 309 3 297 291
16 379 370 361 353 345 338 331 324 317 311
17 403 393 384 315 367 358 352 344 337 331
18 427 417 407 398 389 381 373 - 365 358 351
19 451 40 430 421 411 402 395 386 38 310
20 415 464 453 2 433 424 415 406 398 390
21 500 483 476 466 455 446 436 427 418 410
2 524 511 . 500 488 477 467 457 442 439 430
2 548 535 523  5L1 . 500 489 478 462 459 450
2 572 559 546 533 522 510 500 489 479 470
25 696 582 569 556 344 532 521 - 510 500 490
26 620 606 592 578 566 553 542 531 520 - 509
0 645 629 615 601 588 575 563 551 540 529
28 669 653 638 624 610 597 584 572 560 549
29 693 677 661 646 632 618 605 593 581 569
30 77 700 684 669 654 640 626 6L3 601 589
2 41 724 707 6.1 616 661 647 634 621 609
32 76 748 T30 T4 698 683 669 655 641 629
33 %0 771 153 138 720 105 690 6.5 662 648
3 814 795 778 159 M2 726 7Ll €96 682 668
5 88 818 799 781 764 M8 - T2 TMT 102 688
36 1862 842 823 B804 786 769 753 17 122 708
37 887 866 846 827 808 79I T4 758 743 728
38 811 839 869 849 80 812 795 79 763 48
39 935 913 82 872 82 834 816 799 783 768
40 99 936 915 894 874 856 837 820 804 788
4 883 960 938 917 896 877 859 841 824 807
2 883 961 939 919 899 880 862 844 827
43 %4 962 941 920 901 882 864  BLT -
“ 984 962 2 922 903 885 867
4 984 963 943 924 905 887
4 985 964 944 925 907
41 885 965 945 927
4 985 965 946
49 985 96
50 916
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TABLE B.2. FIVE PERCENT RANKS

Sample Size

Ranie
Order ] 2 3 4 5 6 7 8 9 10
1 5.0 25 1.6 1.2 1.0 0.8 0.7 0.6 0.5 0.5
2 223 135 9.7 7.8 8.2 53 46 4.1 36
3 36.8 248 189 15.3 128 1Lt 9.7 8.7
4 47.2 34.2 27.1 22.5 19.2 16.8 15.0:
8 549 41.8 34.1 239 25.1 222
[} 60.6 479 40.0 4.4 0.3
7 65.1 529 45.0 39.3
8 63.7 570 493
9 ' : 716 60.5
10 74.1
Sample Size
Rank
Order 11 12 13 14 i5 16 17 18 19 20
1 04 04 0.3 03 03 03 0.3 0.2 - 0.2 02 .
2 33 3L 28 28 24 22 2.1 2 1.9 1.8
3 .8 11 6.6 6.1 56 53 49 47 4.4 4.2
4 13.5 12.2 11.2 104 9.6 9.0 8.4 7.9 15 7.1
5 199 18.1 16.5 15.2 14.1 13.2 123 116 109 10.4
8 21.1 24.5 223 20.6 19.0 17.7 16.6 156 14.7 13.9
7 349 31.5 28.7 26.3 24.3 22.6 21.1 198 18.7 17.7
.8 435 39.0 35.4 325 299 27.8 26.0 24.3 229 2L7
9 52.9 47.2 42.7 39.0 359 33.3 He 2.1 27.3 258
10 635 56.1 50.5 45.9 42.2 39.1 364 40 320 30:1
11 76.1 €6.1 58.9 53.4 489 45.1 419 39.2 368 346
12 779 68.8 61.4 56.0 51.5 478 49 418 393
13 794 703 63.6 58.3 53.9 50.2 470 4.1
14 80.7 72.0 65.6 60.4 56.1 524 49.2
15 818 736 67.3 62.3 58.0 544
16 2.9 74.9 689 64.0 59.8
17 83.8 762 704 65.6
18 846 T3 ne
19 854 78.3
20 86.0
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— e s e

Rank

___Urder 2

0.2

13.2
16.8
20.5
244

328

371

41.7
46.4

" 512

56.3
61.5
670
729
793
86.7

22 23 29 .
0.2 0.2 0.2
1.6 1.5 14
3.8 3.6 34
6.4 6.1 59
9.4 89 8.5
126 12.0 1.4
159 152 115
195 186 17.7
232 22.1 21.1
27.1 25.8 246
31.1 29.6 28.2
352 33.5 31.9
395 315 35.7
439 416 316
484 459 437
53.1 50.3 47.8
580 54.9 521
63.0 59.6 56.5
68.4 64.5 61.0
740 69.6 65.8
80.1 75.0 70.7
872 80.9 76.0
877 81.7

88.2

Sumple Size

25

0.2

14

13

5.6

8.2
119
13.9
17.0
20.2
23.5
26.9
30.5
341
37.8
41.6
45.6
49.6
53.7
58.0
62.4
67.0
71.8
76.8
52.3
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26

0.1

1.3

3.2

5.4

7.8
10.5
13.3
16.3
153
22.5
25.8
29.2
326
36.2
39.8
435
47.3
51.3
55.3
59.4
63.7
68.1
72.8
7.7
83.0
83.1

TABLE 1.2, FIvi PERCENT RANKS

27
il
1.3
3.0
5.2
7.5
10.1
12.8
156
18.6
21.6
24.7
28.0
31.3
4.6
8.1
41.7
45.3
49.0
52.8
56.7
60.7
649
69.2
3.9
8.4
836
894

2% 20
0.1 0.1
1.2 1.2
2.9 2.8
5.0 48
7.3 7.0
9.7 94
12. 11.8
150 145
7.9 17.2
20.8 20.0
23.8 235
26.9 25.8
30.0 28.9
33.3 320
36.6 35.2
40.0 38.4
43.4 417
7.0 45.1
56 48.5
.2 52.0
H8.1 55.7
62.0 59.4
66.0 63.2
70.2 67.1
74.5 711
79.1 75.3
u4.1 79.8
§9.8 846
90.1

0

(18]
1.1
2.7
4.6
6.8
9.0
i1.4
140
166
19.3
221
24.9
27.8
30.8
33.8
6.9
40.1
43.3
46.6
50.0
53.4
57.0
60.6
4.2
68.1
72,0
76.1
80.4
85.1
90.4




TABLE B.2,

FIVE PERCENT RANKS

Sample S:zv

Rank
Order 31 32 33 34 35 36 37 38 39 10
1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.l 0.1 w1
2 1 1.1 1.0 1.0 1.0 0.9 0.9 09 09 0.8
3 2.6 26 2.5 2.4 2.3 2.3 2.2 21 21 R
4 45 43 4.2 4.1 239 3.8 3.7 36 35 Ak
5 65 6.3 6.1 59 5.8 5.6 5.4 AR 5.1 S
6 8.7 8.4 8.2 7.9 7.7 7.5 7.3 1 ‘&9 6.7
7 11 1 10.4 10.0 97 9.4 y.2 39 8.7 8.5
8 13.5 13.0 126 12.2 1.2 115 1.2 109 106 0.3
9 16.0 15. 15.0 14.5 14.1 137 13 129 1% 122
0 18.6 18.0 17.4 16.9 163 1569 154 150 4.6 142
11 21.3 20.6 19.9 19.3 18.7 8.1 17.6 i 16.6 16.2
12 24.0 23.2 225 2L.7 21.1 20.4 108 195 8.8 8.3
13 26.8 25.9 25.1 243 23.5 22.8 22.1 25 209 PIX}
14 29.7 28.7 21.7 268 26.0 25.2 24.5 238 231 225
15 326 315 30.4 29.5 28.5 277 0.9 2.1 5.4 207
16 35.6 34.4 33.2 32.1 3.1 30.2 293 8.4 26 W®e
17 38.6 37.3 36.0 4.8 33.7 327 2.7 3038 006 29 1
13 417 40.3 389. 376 364 353 4.2 2 323 3.4
19 49 43.3 41.8 404 39.1 379 68 457 34.7 33.7
20 48.1 46.4 4.8 43.3 419 W06 19.4 382 37.1 WLk
21 51.4 49.5 478 46.2 4.7 423 419 £0.7 9.5 a84
22 548 527 50.9 49.1 475 46.0 446 3.4 42.0 408
23 58.2 £6.0 54.0 52.1 50.4 48.8 47.3 459 4.5 43.3
2% 61.7 59.3 57.2 55.2 53.3 51.6 50.0 485 471 45.7
25 65.3 62.8 604 . 583 56.3 54.5 52.8 512 496 482
26 69.0 66.3 63.8 81.5 59.4 57.4 55.6 539 52 50.3
27 72.8 69.9 67.2 64.7 62.5 60.4 58.4 56.6 549 53.3
28 76.8 736 70.7 68.1 65.6 63.4 6.3 59.4 576 55.9
29 81.0 .5 74.3 7.5 68.9 66.5 64.3 623 60.3 46
30 855 816 78.1 75.0 72.2 69.7 67.3 65.2 63.1 61.2
31 80.7 86.0 82.1 78.7 75.7 729 70.4 68.1 6.0 64.0
32 91.0 86.4 82.6 79.3 76.3 736 L1 68.9 66.7
33 - 913 86.7 83.0 728 76.9 743 718 69.6
34 9.5 87.1 83.5 80. 5 49 725
35 $1.7 87.4 83.9 08 780 75.4
36 92.0 7.9 84.3 81.3 78.5
37 9wy 88.1 84.7 sL?
38 924 86.4 85.0
39 926 f8.6
40 927
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TABLE B.2. FIVE PERCENT RANKS

Nample Size

Rank
Order 41 42 43 7 45 46 17 8 49 50
1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
2 0.8 08 0.8 08 0.7 0.7 0.7 0.7 0.7 0.7
3 2.0 19 1.9 1.8 1.8 18 17 1.7 1.6 1.6
4 3.4 33 3.2 a1 3.0 3.0 29 2.8 2.8 27
5 49 48 46 4.5 4.4 43 4.2 4.1 4.1 40 -
[ 6.5 6.4 6.2 6.1 59 59 6.7 5.5 5.4 53
7 8.2 8.0 7.8 7.1 75 7.3 7.2 70 6.9 6.7
8 100 9.5 9.6 9.3 9.1 89 BT 85 8.3 8.2
9 119 116 1.3 1.1 10.8 10.6 10.3 10.1 9.9 9.7
10 13.8 1356 131 12.8 12.5 12.2 12.0 11.7 11.5 1.2
1t 15.8 15.4 15.0 14.6 14.3 14.0 13.7 134 13.1 12.8
12 17.8 17.3 169 16.5 16.1 15.7 154 15.1 14.7 144
13 19.8 19.3 18.9 "18.4 18.0 17.5 17.2 16.8 16.4 16.1
4 21.9 21.4 20.8 20.3 19.8 194 189 185 18.1 17.7
15 24.0 23.4 22.8 22.3 21.7 21.2 20.8 20.3 199 19.4
16 26.2 25.5 249 24.3 237 23.1 226 22.1 216 21.2
17 284 2786 26.9 26.3 25.6 25.0 245 239 23.4 229
18 30.6 20.8 29.0 28.3 27.6 27.0 26.4 258 252 24.7
19 328 32,0 1.2 30.4 29.6 28.9 28.3 216 - 270 26.5
20 35.1 34.2 333 325 31.7 30.9 30.2 29.5 28.9 28.3
21 374 36.4 35.5 34.6 33.7 329 322 315 30.8 30.1
22 39.7 38.7 3.1 36.7 35.8 35.0 34.2 334 326 31.9
23 421 410 39.9 389 7.9 37.0 36.2 353 34.5 33.8
24 “s 43.3 422 411 401 39.1 38.2 373 36.5 357
25 46.9 456 4“4 433 422 412 40.2 39.3 38.4 376
28 493 48.0 46.7 455 4“4 433 423 4.3 404 395
27 51.8 50.4 49.1 48 46.6 455 4“4 433 424 414
26 54.3 52.8 51.4 50.1 488 478 465 45.4 444 43.4
29 569 55.3 53.8 52.4 61.1 49.8 48.6 475 46.4 453
0 58.5 87.8 58.2 54.8 534 52.0 50.8 496 484 473
3 62.1 60.3 58.7 57.1 5.7 54.3 529 517 50.5 493
32 64.8 629 61.2 59.5 58.0 56.5 55.1 53.8 526 « - 514
33 815 65.5 63.7 62.0 60.4 58.8 574 56.0 54.7 53.4
u 70.3 68.2 68.3 64.5 62.7 61.1 59.6 58.2 56.8 55.5
as 73.1 70.8 68.9 €7.0 65.2 63.5 61.9 60.4 58.9 57.6
a8 76.0 73.7 715 69.5 676 65.9 64.2 62.6 61.1 59.7
37 79.0 76.5 74.3 72.1 702 683 66.5 64.9 633 61.8
a8 82.1 79.5 710 74.8 729 70.8 68.9 67.2 85.5 64.0
39 85.4 825 799 7.5 75.3 73.3 7.3 69.5 618 66.2
4@ 88.9 85.7 829 80.3 78.0 75.8 73.8 71.9 70.1 68.4
41 929 891 86.0 83.3 80.8 78.4 76.3 74.3 724 70.8
42 83.1 89.4 86.8 83.6 81.1 789 76.8 74.8 72.9
43 93.2 89.6 86.6 839 81.5 79.3 7.2 75.3
4“4 93.4 89.8 86.9 84.3 81.9 79.7 77.8
4% 93.5 90.0 87.2 84.6 82.2 80.1
46 836 90.3 87.4 84.9 82.8
47 93.8 90.4 /7.7 85.2
48 93.9 90.6 879
49 94.0 90.8
80 94.1
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TABLE B.3. NINETY-FIVE PERCENT RANKS

Sample Size

Rank »
Order ] 2 3 4 5 6 7 & 9 10
1 95.0 71.6 63.1 52.7 45.0 393 B2 B 3.2 28.3 258
2 974 86.4 75.1 65.7 58.1 520 470 429 39.4
3 98.3 90.2 81.0 728 65.8 599 54.9 50.6
4 98.7 92.3 84.6 T4 71.0 65.5 60.6
5 98.9 93.7 87.1 80.7 748 69.6
8 9.1 94.6 88.8 83.1 7.7
7 992 953 902 849
8 99.3 95.8 91.2
9 99.4 96.3
10 99.4
Sample Size
Rank
__ Order 11 12 13 14 15 16 17 18 19 20
1 238 220 20.5 19.2 18.1 170 16.1 15.3 14.5 139
2 36.4 33.8 31.6 29.6 279 26.3 25.0 2.7 226 21.6
3 470 438 41.0 38.5 36.3 M3 326 310 29.5 28.2
4 56.4 52,7 494 46.5 439 416 39.5 376 359 343
5 65.0 60.9 57.2 54.0 51.0 484 46.0 438 419 40.1
[] 728 68.4 84.5 60.9 577 54.8 52.1 49.7 4715 45.5
7 80.0 75.4 71.2 7.4 64.0 60.8 58.0 55.4 529 59.7
8 86.4 81.8 77.8 73.6 70.0 66.6 63.5 60.7 58.1. 55.8
9 921 81.7 834 793 76.6 72.1 68.9 6.9 63.1 60.6
10 . 98,6 928 88.7 84.7 80.9 7.3 739 708 679 65.3
11 9.5 96.9 93.3 89.5 85.8 822 788 5.6 72.6 69.8
12 99.5° 7.1 93.8 90.3 86.7 833 80.1 770 74.1
13 99.6 974 94.3 20.9 87.8 843 81.2 78.2
14 99.6 97.5 .6 1.5 88.3 856.2 82.
15 99.6 9.7 95.0 920 89.0 86.0
16 99.6 97.8 95.2 924 89.5
17 99.6 979 95.5 92.8
18 98.7 98.0 95.7
19 99.7 98.1
20 99.7
\
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TABLE B NINETY-FIVE PERCENT RANKS

Sample Size

Rank )
Order 21 22 .23 24 25 26 27 20 29 30

} 1.2 127 12.2 11.7 1.2 108 o 1os 10.1 9.8 9.5
2 20.6 19.8 19.0 18.2 17.6 16.9 16.3 15.8 15.3 148
3 27.0 269 24.9 239 23.1 2222 215 208 20.1 19.5
4 329 L5 30.3 29.2 28.1 271 26.2 25.4 24.6 23.8
5 8.4 36.9 35.4 4.1 329 31.8 30.7 29.7 28.8 27.9
6 43.6 419 40.3 38.9 375 36.2 35.0 339 328 31.8
7 48.7 468 - 450 434 41.9 40.5 39.2 379 36.8 35.7
8 53.5 51.5 496 47.8 46.2 4.6 43.2 41.8 405 39.3
9 54.2 56.0 54.0 52.1 50.3 487 471 45.6 44.2 429
10 62.8 60.4 58.3 £6.2 54.3 528 50.9 49.3 479 46.5
11 67.1 64.7 62.4 60.3 58.3 56.4 54.6 52.9 51.4 49.9
12 714 68.8 66.4 64.2 62.1 60.1 - 58.2 56.5 54.8 53.3
13 5.5 728 70.3 68.0 65.8 63.7 61.8 59.9 58.2 56.6
14 794 76.7 4.1 711 69.4 673 65.3 63.3 61.5 59.8
15 83.1 80.4 7.8 75.3 73.0 70.7 68.6 66.6 64.7 63.0
16 86.7 84.0 81.3 78.8 76.4 4.1 7.9 69.9 67.9 66.1
17 90.1 87.3 84.7 82.2 .7 7.4 75.2 73.0 71.0 69.1
18 93.2 90.5 87.9 85.4 829 808 . - 783 76.1 74.1 720
19 95.9 93.5 91.0 88.5 86.0 83.6 81.3 79.1 7.0 75.0
20 98.2 96.1 938 014 839 88.6 84.3 82.0 79.9 778
21 99.7 98.3 963 - 94.0 91.7 89.4 87.1 84.9 82.7 80.6
22 99.7 98.4 96.5 94.3 92.1 89.8 87.6 85.4 83.3
23 99.7 98.4 96.6 94.5 924 90.2 88.0 859
24 99.7 98.5 98.7 94.7 92.6 90.5 88.6
25 99.7 98.6 96.9 94.9 929 '90.9
28 99.8 98.6 97.0 95.1 93.1
27 99.8 98.7 97.1 95.3
3 99.8 98.7 97.2
29 20.8 28.8
30 99.8
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! : TABLE B.3. NINETY-FIVE PERCENT RANKS

Sample Size

; Order 31 32 3 34 35 36 37 N J9 40
i 1 9.2 89 8.6 84 8.2 19 1.7 15 73 7.2
i 14.4 13.9 13.5 13.2 12.8 12.5 12.1 1.8 11.5 11.3
— 3 1869 183 178 173 169 164 160 156 152 149
n 231 24 218 212 26 201 196 191 186 182

5 271 263 256 249 242 236 230 224 219 214

6 309 300 292 284 277 270 23 256 250 245

r 1 46 336 327 318 310 302 295 288 281 274

8 382 371 - 361 352 343 334 326 318 310 303

9 4.7 406 385 384 374 365 356 347 339 332

: 10 451 439 427 416 405 395 386 316 368 359
f 1 485 472 459 447 436 425 415 405 398 387
; 12 518 504 490 478 ' 466 . 454 443 433 423 413
- 13 850 535 521  Su8 495 483 - 471 460 450 440
14 582 666  Au1 537 624  BL1 499 487 478 466

_ 15 613 596 581 566 552 539 526 5L4 503 491
: 16 643 626 610 595 580 666 553 540 528 5.7
: 17 673 655 639 623 608 593 580 566 554 542
: 18 702 684 667 651 635 620 606 592 579 566
) 19 731 712 695 678 662 646 631 617 604 5.1
; 20 759 - 40 722 704 688 672 657 642 628  6L5
; 21 786. 767 48 131 T4 697 682 667 652 638
. 22 8.3 79, 774 756 139 722 706 61 678 662
; 23 839 819 800 782 764 747 730 5 699 . 685
24 84 . 844 825 806 788 T.1 754 T8 123 708

- 25 888 ' 869 849 830 812 795 778 W1 45 730

26 812 - 892 873 £54 838 818 801 B4 68 752

n 934 915 895 BT 858 840 823 M6 0 774

: 28 8.4 936 9.7 899 880 862 845 828 8L1 795
' 29 973 96 938 920 902 84 8.6 849 83 816
0 988 973 957 940 922 905 887 816 83 837

31 998 988 974 958 941 924 907 890 8.3 857

32 98 989 975 90 943 926 910 893 877

33 998 989 976 961 945 928 912 896

: M 998 989 976 962 O46 930 914
. 35 998 990 977 963 948 932
: 36 998 990 9718 964 849
; 27 %98 90 978 95
’ 38 98 90 - 979
39 98 991

0 9.8

! ' 153

MU

——— e




TABLE B.3. NINETY-FIVE PERCENT RANKS

Sample Size

Rank ) T .

Order 41 42 43 44 45 46 47 48 49 50
1 7.0 68 6.7 6.5 6.4 6.3 6.1 6.0 59 58
2 1.0 10.8 105 103 10.1 9.9 9.7 8.5 9.3 9.1
a 145 14.2 139 136 13.3 13.0 12.7 12,5 12.2 120
4 17.8 174 17.0 16.6 16.3 16.0 15.6 15.3 15.0 14.7
5 209 20.4 20.0 196 191 18.8 18.4 18.0 17.7 17.3
6 23.9 23.4 229 24 219 21.5 210 206 20.2 19.8
7 26.8 26.2 25.6 25.1 24.6 24.1 23.6 23.1 22.7 22.3
8 29.6 29.0 28.4 278 212 26.6 26.1 25.6 25.1 24.6
) 324 31.7 31.0 30.4 29.7 29.1 28.6 28.0 275 210
10 35.1 34.4 336 329 323 316 310 0.4 29.8 29.3
1 a7.8 37.0 36.2 35.4 347 34.0 33.4 32.7 32.1 315
12 404 396 38.7 319 37.2 36.4 35.7 35.0 344 33.7
13 430 42.1 412 404 39.5 388 38.0 373 36.6 359
14 456 4“6 43.7 4238 419 41.1 40.3 39.5 38.8 38.1
15 48.1 411 46.1 45.1 442 434 425 417 41.0 40.2
16 50.6 495 48.5 415 465 456 448 439 43.1 423
17 53.0 51.9 50.8 498 4838 419 47.0 46.1 45.2 444
18 56.4 543 53.2 52.1 511 50.1 49.1 48.2 473 46.5
19 578 56.6 55.5 54.4 63.3 52.3 51.3 50.3 49.4 485
20 60.2 58.9 57.7 566 85.5 54.4 534 52.4 S1.5 50.6

21 62.5 012 60.0 58.8 577 56.6 55.5 545 53.5 52,
22 64.8 63.5 62.2 61.0 59.8 58.7 57.6 56.6 55.5 54.6
23 67.1 65.7 64.4 63.2 62,0 60.8 59.7 58.6 575 56.5
T 69.3 67.9 66.6 65.3 64.1 62.9 61.7 60.6 59.5 58.5
25 715 70.1 68.8 614 66.2 64.9 63.7 626 81.5 60.4
26 3.7 72.3 709 69.5 68.2 67.0 65.7 64.6 €3.4 62.3
21 75.9 74.4 73.0 716 703 69.0 61.7 66.5 65.4 64.2
b7 78.0 76.5 75.0 736 723 7.0 69.7 68.5 671.3 66.1
29 80.1 785 7.1 75.6 743 72.9 71.6 70.4 69.1 68.0
30 82.1 80.6 79.1 716 76.2 749 73.5 72.3 71.0 69.8
3 84.1 826 81.0 79.6 78.2 76.8 75.4 74.1 729 716
.32 86.1 84.5 83.0 815 80.1 78.7 713 76.0 4.7 73.4
a3 88.0 86.4 849 83.4 819 80.5 79.1 778 7.5 75.2
k7] 89.9 88.3 86.8 85.3 83.8 82.4 81.0 79.6 78.3 77.0
as 1.7 90.1 88.6 817.1 85.6 84.2 82.7 814 80.0 78.7
36 93.4 91.9 90.3 88.8 874 85.9 84.5 93.1 81.8 80.5
37 95.0 93.5 921 90.6 89.1 81.7 86.2 8438 83.5 82.2
a8 96.5 95.1 93.7 92.2 90.8 89.3 87.9 86.5 85.2 838
39 971.9 96.6 95.3 93.8 92.4 91.0 89.6 88.2 86.8 85.5
40 99.1 98.0 96.7 95.4 84.0 926 91.2 89.8 88.4 87.1
41 99.8 99.1 98.0 96.8 95.5 94.1 92.7 91.4 90.0 88.7
42 99.8 09.1 98.1 26.9 95.8 94.2 92.9 91.6 90.2
43 99.8 99.1 981 - 969 95.7 94.4 93.0 91.7
4“ 99.8 99.2 98.i 97.0 95.8 94.5 93.2
45 99.8 99.2 98.2 97.1 95.3 94.6
4 99.8 99.2 98.2 97.1 95.9
47 99.8 99.2 98.3 97.2
48 99.8 99.2 98.3
49 99.8 99.2
50 99.8
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APPENDIX C

RANK REGRESSION (WEIBULL PLOT) METHOD OF WEIBULL ANALYSIS

1. METHOD

Median rank regression uses a best-fit straight line, through the data plotted on Weibull
peper, Lo estimate the Weibull parameters beta and eta. The *best-fit” line is found by the
method of least squares.

First, the failure times and median ranks (see Chapter 2 for the calculation of median

“ranks) are “transformed”, as follows:

Y = fn (cycles-to-failure!

X = Qn(ﬁn ( 1= Mediaxll Rankof Y ))

(The median rank is expressed in accimal forin.)
Least squares is then useg to estimate A and B in the equation Y = A + BX. These
A

estimates will be referred to as A and g, respectively. The median rank regression estimates of
the Weibull parameters are:

f- g
A

1=

2. EXAMPLE AND STEP-BY-STEP PROCEDURE

The median rank regression method will be illustrated with the censored data listed Lelow.

Cycles Status

1500 Failure

1750 Suspension
2250 Failuie

4000 Failure

4300 Failure

5000 Suspension
7000 Failure

Step 1: Calculate the median ranks of the failure times usi 1z the methods or Chapter 2.

Cycles to Failure Raick Order Number Median Rank (decimal form)
1500 1.0000 0.0946
2250 2.1667 0.2523
4000 3.3333 0.4099
4300 4.5000 0.5676
7000 6.2500 : 0.8041
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Step 2: For each failure, calculate the natural (base e) logarithm of the cycles-to-failure

(Y = n (cycles-to-failure) )

ana‘x .=“9n(9'"( 1 —‘ Mediaxll Ran;(‘ ofl Y )) |

Cycles to Failure

1500
2250
4000
4300
7000

' A A
Step 3: Calculate the least squares estimates A and B of A and B in the equation

Y.= A + BX, where:

R =Y~ ﬁ X where Y is the average of the Y's
and X is the average of the X’s, -

and

Median Rank

0.0946
0.2523
0.4099
0.5676
0.8041

(52) (30)

Sxy — '
ianl YI n
B
Zx — (Eo)
i i
In the above example, n

¥ X; = -3.8714

S X.2= 7.5356

So
_oggnas — (=3:8714)(40.5460)
4 5
B = 2
75356 — 7(”—3.2714)_-.‘
A _ 25%5
45381
B = 0.5554
and

A : .
A = 8.1092 — (0.5554) (—0.7743)
A

A

= 8.5392

s
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Y
7.3132
7.7187
8.2940

8.3664
8.8537

8.1092

-0.7743

it

X

—2.3088
-1.2353
-0.6397
-0.1763

0.4887




Step 4: Calculate the median rank regression estimates of g and n:
A 1 _ :
= ‘ﬁ' = o555 — 180
A-d o om0

The Weibull equation used to calculate the probability .6f failure before t cycles is then:

Fit)=1- o~ (t/5111.25)"*

Figure C.1 shows the data plotted on Weibull paper with the least squares line overlaid.
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T T T ITIII0 ) ' /
oy WEIBULL DISTRIBUTION y 4
g =1.8 7
s = 5111.25

= SAMPLE SIZE = 5

=t {FAILLRES = 5

P 1

<]

>

LINE

CLM.LF\TIVE PERCENT OCCURRED
-
:
8
i

100, 2. 3. 4, S.8.7.8.9.1000, 2. 2. 4. S, 8, 7.9.9.10000,

TOTAL OPERATING CYCLES

Figure C.1. Example Data With Least Squares Line
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APPENDIX D

MAXIMUM LIKELIHOOD METHOD OF WEIBULL ANALYSIS

1. FOREWORD

Weibull analysis consists of “fitting” failure data to the Weibull distribution by estimating

'the parameters, beta (8) and eta (). The rank regression (Weibull plot) method was presented

in"Chapter 2; this Appendix presents an explanation and an example of maximum likelihood
Weibull analysis. Details of the maximum likelihood method may be found in Way:le Nelson’s
text, Applled Life Data Analysis (1982), John Wiley and Sons, New York.

~ 'I'he maximum likelihood Weibull analysis method consists of fihding the values of 8 and 7
which maximize the “likelihood,” of obtaining the observed data. The likelihood of obtaining
the observed duta, expressed in mathematical form, is a function of the Weibull parameters g8

.and 5. Maximum likelihood finds the values of § and n which maximize this mathematlcal
. likelihood function. .

2. THE LIKELIHOOD FUNCTION

The likelihood function is the mathematical expression of the prpbabdlty of obtaining the
observed data. 1

H
H

When the sample is complete {2ll units are run to faiiure),'tlile likelihood function is:

L - 3. fix) = £x;) f(x;) -+ - f(x,)

where n = sample size

fo) = S5

and F(x) =1 - e~xhY

" In reliability terms, F(x) is the probability that a unit will fail before it acquires x units of

_operating time. F(x) is often called the “unreliability” at time x, and satisfies

F(x) =1 -R(x)
where R(x) = reliability at time x.

When the time-to-failure distribution is Weibull,

f(x) = % (—:—)” ‘e — ¥

nd L = , (£) (Z) ' e- o

. Note that the “likelihood” of the sample failure data x;, x,, . . ., x,, is a function of the Weibull

parameters 8 and 7.
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The general form of the likelihood function for censored samples (where not every unit has een

run to failure) is:

r k
L = = tx)r (1 - F(T))
. .

[ )

where

= number of units run to failure
k = number of unfailed units
Xy, Xg, . . ., X, = known failure times
Ty, Ty, ..., T\ = operating time on each unfailed unit.

When the time-to-failure distribution is Weibull,

. k
L = ,r, (.’2‘.) (_x,_). T T oo - (Tyw!
AR b P -

J ]

3. MAXIMIZING THE LIKELIHOOD FUNCTION

The maximum likelihood method finds the values of 8 and n which maximize the
likelihood function. To find the values of 8 and n which maximize the Weibull likelihood
function, differentiate the logarithm of the likelihood function with respect to f and 5, equate
the resulting expressions to zero, and simultaneously solve for g and 1.

. - . AL
In the complete sample case, the maximum likelihood estimate of 3, denoted B, satisfies

A

2x! tnx;

il n

—..—T—"',l,—z’?nxi—'j}=0
E i i~

Given the failure times x;, X, . . ..
iterative procedures.

x., the maximum likelihood estimate ot 8 is found using

The maximum likelihood estimate of 7 is:

n A ¥ ‘
Zx!
A =1
n = “n_

A
where 3 is the maximum likelihood estimate of g.

)

- . - . . A .
When the sample is censored, the maximum likelihood 3 estimate, g3, satisfies

2
Zx! tnx,

i=1 1 r‘ X
S - b - k=0
ri
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where N = total samplé size
(N = number of failures (r) + number of suspensions (k)).

Units censored at times T, are assigned the values x,,; T;. The second term in the

. . 1 & - . .
' equation, — 2 fnx;, sums the logarithms of the failure times only.
[

A . .. .
f is again found using iterative procedures.

Analogous to the complete sample case, the maximum likelihood estimate of n is, in
censored samples, ' '

N A

(Ex?)
A i=f
= T

4. EXAMPLE

A

The maximum likelihood method will be illustrated with the censored data listed below.

Cycles Status
1500 Failure
1750 ' Suspension
2250 Failure
4000 Failure
4300 : Failure
5000 Suspension
7000 Failure

A
The maximum likelihood g estimate, 8, is the root of the equation

7
zxfﬂnxi
i=1 1 & 1
GB) = ——— - 5 Zx ~ 5 =0
Zx! i
i=1 !
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‘ The Weibull plot estimate, 1.8. was usad as tha
estimates of 3 are listed below with the correspondin
using a modified Newton-Raphson procedure was used

Maximur
Likelihood
Estimate of —.

Beta

8

1.800
1.802
2179
2182
2.255
2.256
2.257

‘The maximum likelihood estimate of nis

ESrs o

initial value of 3. This and sithsequent
2 value of G(3). (A Fortran subroutine
to find the value of g giving G 0)

G(p)

—0.1754
—-0.1746
—0.0255
-0.0248
=0.0007
-0.0005
—0.0000

R
R &

g




AFPENDIX E

WEIBAYES METHODS

1. FOREWORD

Weibayes is a methaod for construeting a Weibull distribution based on assuming a value of
i, the Weibull slope parameter. It is used when there are certain deficiencies in the data ¢for
instance, when operating time has been accumulated, but no failures have occurred). Chapter 4
describes several applications of this method.

The Weibayes equation for 5 is

it{'
i=} e
n”* = ( T ) (E.1)

where s the assumed value of the Weibull slope parameter,
n is the number of suspensions or unfailed units in the fleet,
tys ty, - - -, ¢, are the operating times eccumulated by units 1,2, - - -, n.
r is the number of failures.

If no failures have occurred, r is assumed to be one, i.e., the first failure is imminenui. »* is
then a conservative 63, lower confidence bound on the true value of 5. If failures have occurred
and Weibayes is used, n* is the maximum likelihood estimator of the true value of 5.

2. DERIVATION OF THE WEIBAYES EQUATION

If no failures have occurred, the Weibayes equation with r = 1 gives a conservative 63"
lower confidence bound on the true value of .

The lower bound is derived using two facts from statistics:

1. Ift, ty ..., t, represent failure times drawn from a Weibull population

with slope parameter # and characteristic life n, then tf, tf,..t2

. - represents a random sample from an exponential population with mean

o 4 life # = #. The exponential cumulative distribution function is
Fiti =1 -,

2. If no failures have occurred in a fleet with n units having operating times

ty ty . . ., t,, and the units are susceptible to an exponential failure mode,
» then a conservative 100 (I — «)‘ one-sided lower confidence limit on the

mean life A is:

e TV") .
T tha : (E.2)
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Conservative meins that the true confidence level is unknown, hut is at least
10w,

Thus, il no failures have occurred in a fleet with n units having operating times t. ..t

) : . . . . .
< and the units are susceptible to a Weibuall failure mode with known g (and unknown »), then a
- conservative 100 (1 - «)* one-sided lower confidence limit on 0 - ' is:
> .
"
Zt?
i=1
0= 9= e Fn—
2t
vz ()"
n= p—
'_Qﬁ‘ : (E3)

Thé Weibayes lower bound on 5 (E.1) is eg'.iél to the lower confidence bound in (E.3) with
the denominator, — €n « = l.1 . Solving for «, uz{c’ find:

J /
e = 10 | /,/'
n o = -1.0 {
« = e 10 7
o = (.368 l
|

Thus, the Weiba;es lower bound on n is a 100 (I — 0.368)7. = 63.2% conservative lower
confidence bound for 1.

The confidence level can be increased by decreasing « in the denominator of the expression
on the right hand side of ir.eguality (E.3). For example, a conservative 90, lower confidence
nound on 5 can be calculated by setting « = 0.10, giving

flt{'
i-

1 ’ t
= (—__—m)' “ with at least 90% confidence

. (iwilt:'
=gz )”

Note that with ¢ assumed, determining a lower bound for 5 also determines a lower hound
for the Weibull line,

If failures have occurred, and Weibayes is used, n* is the maximum likelihood estimator of

the true value of 5. This is shown by finding the value of y that maximizes the Weibull likelihood
equations from Appendix D, while assuming that g, the Weibull slope parameter, is known.
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These calculations, similar to those discussed in Appendix D, result in the following equation for
the maximum likelihood estimator of n (assuming that g is known):

II‘ "
pORT:

SR

(E.4)

Equations E.1 (Weibayes) and E.4 (maximum likelihood) are identical, demonstrating that

the Weibayes equation yields the muximum likelihood estimator of y, when failures have
occurred and g is known,
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APPENDIX F

MONTE CARLO SIMULATION STUDY —
ACCURACY OF WEIBULL ANALYSIS METHODS

1. FOREWORD

Safety considerations in aerospace operations require corrective action based on very small
samples of failure data. As this is unusual compared to other Weibull applications, Monte Carlo
simulation was used to study the accuracy of Weibull analysis when applied to data from a fleet
of several thousand successfully operating units and very few service failures (three to ten
failures). Of prime importance were the accuracy and precision of the risk forecasts, the g
estimates, and the B.1 life estimates. Two methods of Weibull analysis were considered and
comparert: median rank regression and maximum likelihood. These two methods are among the
most commonly used for estimating g and n with multiply censored data (i.e., data containing
hoth failures and suspensions, with the suspensions and failure times intermixed). Median rank
regression is covered in Chapter 2 and Appendix C. Maximum likelihood methods are
introduced in Appendix D. Details of the Monte Carlo simulation method are discussed later in
this appendix.

Figure F.1 illustrates the meaning of the accuracy and precision of Weibull parameter
estimates. A simulated fleet with 2000 operating units was introduced to a Weibull failure mode
with § = 3 and n = 13,000 hours. When the fleet experienced its 5th failure, a Weibull analysis
was performed. The estimated values of 8 and n were stored, the fleet was re-created and re-
introduced to the Weibull failure mode. A Weibull analysis was again done at che time of the 5th
failure. The 3 and n estimates were stored, and the process was repeated many times, for a total
of 1000 estimates of 8 and  under the simulated circumstances. Figure F.1 is a histogram of the
B estimates. It shows that 294 of the 1000 estimates of 8 were between 0.5 and 2.5. (No estimates
were below 0.5). In 392 out of 1000 simulation triuls, 8 was estimated between 2.5 and 4.5.
“Accuracy” refers to the difference between the “typical” g estimate and the true value of 8. In
this case, the median g estimate is 3.5 (50 of the estimates are below 3.5, 50. are above 3.5)
and the true value of g is 3.0: the 8 estimates are quite accurate with 5 failures. Precision refers
to the variability in the g estimates, and is normally measured by the standard deviation. The
more the g estimates deviate from their mean value, the higher is their standard deviation.

The standard deviation of the 1000 8 estimates 8 |, 8,, . . ., 81000, is calculated as:

1000
. E (Hi - ﬂm)’
=1
S =
999
where
_ Bt Bt e t B
Bew 1000
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2. BETA (5) ESTIMATES

The accuracy of the maximum likelihood (ML) and median rank regressiof: (MRR) 8
estimates, calcuated with a small number of failures and a large number of unfailed units, is
illustrated in Figure F.2.

The standard deviations of the small sample g estimates are shown in Figure F.3.

The following can be seen from Figures F.2 and F.3:

1. - Both methods of analysis, median rank regression and maximum likeli-"
hood, tend to overestimate 8. When the failure data are plotted on Weibull
paper, the slope is generally too steep.

2.  The accuracy and precision of the 8 estimates improve as the number of
failures increases.

3. Both methods of analysis produce estimates of comparable accuracy.
Maximum likelihood estimates are noticeably more accurate for g = 5.0,
eapecially with very few failures.

4. Maximum likelihood g estimates are more precise than median rank
regression estimates, especially when the data contain as few as three to
five failures. In the three-failure case, maximum likelihood estimates have

hetween 44¢: and 68¢. less variability than median rank regression
estimates. '

3. B.1 LIFE ESTIMATES

The B.1 life is frequently used as a design criteria. Its estimate from field data is often
compared to the predicted or design B.1 life, so its accurate estimation is important.

Figure F.4 illustrates the accuracy of the B.1 life estimates over the range of the study.

Figure F.5 shows the B.1 life standard deviations as a function of sample size (3 to 10
failures, 1OV to 2000 unfailed units).
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Figures F.4 and F.5 indicate that:

1.  Median rank regression estimates of the B.1 life are typically conservative:
the estimated B.1 life is more often than not less than the true B.1 life.

The accuracy of the median rank regression B.1 life estimates improves as

v 2.
the number of failures increases.
. 3 For g = 05, 1, and 3, the inaximum likelihood method typicaily

overestimated the B.1 life (ML overestimated the B.1 life in approximately
58 of the simulation trials, for 8 = 0.5, 1, and 3.0 MRR overestimated the
B.1 life in ~ 40% of the simulation trials). '

4. For 8 = 5, maximum likelihood typically underestimated the B.1 life (ML
underestimated the B.1 life in 52% of the simulation trials, vs. 58% for
MRR).

5. The precision cof the B.1 life estimate does not necessanly improve as the
number of failures increases from three to ten.

4. ETA (n) ESTIMATES

The medians of the characteristic life estimates from simulated fleets with few failures are
shown in Figures F.6 and F.7.

T'able F.1 contains the standard deviations of the characteristic life estimates.

STANDARD DEVIATIONS OF THE CHARACTERISTIC.
LIFE ESTIMATES

TABLE F.1.

Standard Deviations of the
: Eta Estimates
Type True True o 3 5 - 10

Estimates Beta Eta Failures Failures Failures
MRR 0.5 100,000,000 4.8 X 102 4.3 x 10* 6.5 x 10
ML 2.7 x 10 1.9 x 10™ 3.0 x 10
MRR 10 500,000 8.8 x 101 13 x 10" 1.2 x 10°
ML 46 x 10" 9.2 x 108 8.1 x 105
MRR 3.0 13,000 320,000 76,000 21,000
a ML 27,000 15,000 6,300
MRR 5.0 5,175 8,200 5900 2,200
ML 3,300 3,000 1,900
[ 4
MRR = Median Rank Regression
ML = Maximum Likelihood
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Table F.1 and Figures F.., and F.7 indicate that:

1.  The median rank regression (MRR) and maximum likelihooa (ML) -
" estimates are conservative:  is typicall» underestimated.

2. The accuracy of both types of estimates improves as the number of failures
increases from 3 to 10,

3. The precisinn of the characteristic life estimates improves as the number
of failures increases. . '

4.  The standard deviations of the r estimates are extremely large, reflecting -
tha presence of several extremely large estimates of n at each simulated
condition.

‘5. RISK FORECASTS

This section addresses the accuracy and precision of risk forecasts made when there are
only 3 to 10 failures and 1000 to 2000 suspensions in a fleet (a risk forecast is a prediction of the
number of failures expected to occur over a period of calendar time). Methods fc~ constructirg
risk forecasts from multiply-censored life data can be found in Chapter 3.

The accuracy and precision of the risk forecasts are assessed by advancing a simulated fleet
through a known Weibull failure mode to the time of its 3rd, 5th, and 10th failures. A Weibull
analysis is done and the risk forecast is made, up to 12 months into the future. The fleet is then
advanced 12 mouths further through the Weibull failure mode using an average military aircraft
utilization rate. The risk forecast is then compared to the actual number of failures caused by
the fleet’s additionat 12 month advance. This procedure is repeated 100 times with 100 different
simulated Meets to assess the variability and accuracy of the risk estimates.

5.1 RISY. FORECAST ACCURACY

Table F.2 contains the medians of the maximum likelihood and rank regression forecasts
for 0, 6, and 12 months into the future. The entry under “0” months ahead indicates the
cumulative number of failures expected ‘to date’ (at the time the analysis is performed). Thus,
when g = 1 and there are three failures in the fleet, there are 5 — 3 = 2 additional failures
expected over the 12 month interval following the occurrence of the third failure. The rank
regression method predicts an “average” of 11 — 5 = 6 additional failures, and maximum
likelihood predicts an “average™ of 6 — 3 = 3 additional failures. ’
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TAPLE F.2. RISK FORECAST ACCURACY

g =05
Median Median
No. Months Mzdian MRR ML
. Failires Ahead Risk Forecast Forecast
3 0 3 4 ]
6 3 6 4
12 4 7 4
’ 5 V] 5 6 5
6 3 7 5
12 [+ 7 6
10 0 10 11 10
[ ' 10 i 11 10
12 10 11 11
g=1
3 [1] 3 4 3
6 3 5 4
12 4 6 4
5 0 5 7 5
6 5 7 6
12 8 8 6
10 0 10 11 10
8 11 il 11
12 1 ' 12 1
8=3
Median Median
No. Months Median MR® ML
Failures Ahead Risk Forecast Forecast
o 0 3 £ 3
6 4 8 .
12 5 11 6
5 [\] 5 7 5
;4 ] ¢ 6
12 7 11 8
10 0 10 12 10
6 12 14 12
12 14 17 15
8=5 i )
Median Median
. No. Months Median : MRR ML
Failures " Ahead Risk Forzcast Forecast
3 0 3 6 3
. ] 4 12 5
12 7 22 .8
5 0 5 8 5
6 7 14 8
12 10 25 12
10 (1] 10 13 1%
. 6 14 19 4
12 19 28 p2 S
177

Elre o

ha i Sy TS iR ST RGBTl b YA eS LA AV UV RPN O SV B S8 S PSS S PR S R AL AT A SR A S X SV

[

- St e




r.'-' Yo
e

, 4
X3

-
a ,l.

P NN

-~ PRl o

..

Ye"2"8%s"4’

v

TV /

[y & Ny W

Y

o e
LR ALPS N Y

+ 3 AL NN W

-
ﬂ‘;.

P

" From Table F.2, it is seen that:

I. Rank regression risk estimates tend to be verv conservative - they
overpredict the number of failures. Maximum likelihood risk forecasts are
only slightly conservative.

2. Forecasts based on maximum likelihood Wethull analyses are always more
accurate than forecasts based on rank regression Weibull analyses.

3. The accuracy differences between the two methods increases as g
increases. Maximum likelihood methods are much more accurate than
rank regression with g = 5; they are only marginally more accurate when 3

= 0.5,

5.2 RISK FORECAST PRECISION

Table F.3 presents the standard deviations of ‘the risk forecasts 0, 6, and 12 months into
the “future”. (The risk forecast 0 months into the future is the expected number of failures to

date.)

TABLE F.3. RISK FORECAST STANDARD DEVIATIONS

g =05
No. Months ~ MRR ML
Failures Ahead Forecast Forecast

3 0 220 0.003
(] 52.0 0.98

12 91.0 2.3
5 0 38 0.002
6 4.8 0.45

12 6.1 . 091
10 0 28 0.004
6 a1 9.22

12 33 0.43

A=1
No. . Months - MRR ML
Failures Ahead Forecast Forecast

3 0 730 0.002
(] 94.0 0.84

12 1120 2.3
5 0 34.0 0.002
6 56.0 0.59

12 67.0 1.4

10 0 3.2 0.006
8 3.6 0.24

12 4.1 0.49
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TABLE F.3.

RISK FORECAST STANDARD DEVIATIONS

g =3
No. Months MRR ML
Failures Ahecd Forecast Forecast

3 0 14.0 0.008

] 19.0 1.2

12 40 ‘44
] (1] 74 0.008

] 100 11

12 14.0 33
10 0 40 0011

[ ) 5.1 079

12 65 . 19

g=5
No. Months MRR ML
Failures Ahead Forecast Forecast

: 3 (1] 11.0 0.007

[} 370 14

12 88.0 53
] 0 4.7 0.011

[ ] 140 L7

12 380 - 58
10 0 4.4 0.015

[ ] -12.0 1.5

12 29.0 4.4

Table F.3 shows that:

1.  The rank regression forecasta vary substantially (up to 50 times more than

forecasts based on maximum likelihood Weikull analyses).

2. ‘Maximum likelihcod forecasts are far l*\ore precise than rank regression
forecasts, over the entire scope of this study.

3.  As the number of failures used in thel Weibul. aaalysis increases, the -

precision of the resulting risk forecasts improves.

MONTE CARLO SIMULATION

The Monte Carlo simulation consists of input,
components of each segment are listed in Table F.4.
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TABLE F4. COMPONENTS OF MONTE CARLO SIMULATOR

snput Processing Chutput
1. Fleet nize 1. Fleet construction 1. Weibuill parameter estimates
2. Fieet age distribution 2. Fleet aging 2. One.year-ahead risk forecasts
3. Production schedule 3. New member addition 3. Actual one-year ahead failure
4. Usage rate 4. Random failure time geners- counts : :
8. True Weibull parameters tion -
6. Random numnburs 5. Parameter estimation

~__8_Riek forecasting

The Monte Carlo simulation procedure is illustrated in Figure F.3.

Fleet characteristics and Weihull failure mode parameters are input inte the simalator,
The fleet characteristics are (1} the number of units in the ileet; (2) the fleet age distribution; (3)
the production schedule; and (4) the per-unit monthiy usage rate. The age distribution is
assumed to be normal, with 1000 to 2000 units in the {icet. New members are brought into the
fleet according to a production schedule and utilized st a rate typically experienced with Pratt &
Whitney Aircraft military gas turbine engines. The simnulator generates failures among the units
in the fleet according to the Weibull failure mode input. Slope paramete’s ‘gs) of one-half, one,
three, and five were chosen to represent infant mortality, random, wearout, and rapid wearout
failure modes, respectively. See Figure F.9.

The processing segment includes constructing and aging the fleet, incorporating new
members, generating random failure times, estimating the Weibull parameters, and forecasting
the additional number of failures expected in the year ahead. Failure times are generated for
each member of the fleet using random numbers and the input Weibull parameters. The fleet is
aged unt:l 3, 5, and 10 failures occur. Weibull analyses are performed at these times, and the
year-ahead forecasts are made. This process continues until 10 failures occur in the fleet. The
fleet is then reconstructed, and the process begins again. For the rank regression estimators this
process was repeated 1000 .inies for each failure mode considered. Cost considerations limited
thix number to 100 for the maximum likelihood estimators.

Parameter estimates, vear-ahead failure forecasts, and actual year-nhead: failure counts are
output. ‘The error in the estimation method is reflected in the differences between the parameter
estimates and the actual Weibull parameters input to the simulator. The l‘o}ecasting error is
simply the difference between the actual and forecast failure counts. |
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This appendix contains a summary of the strengths and weaknesses (and general
comments) of the rank regression method and the maximum likelihood method of Weibull

analysis.

1.

3i

APPENDIX G

RANK REGRESSION METHOD VS MAXiMUM LIKELIHOOD
METHOD OF WEIBULL ANALYSIS

Rank regression provides a graphical display of the d:ta. This heips to
identify instances of:

a. The Weibull distributicn not fitting ..ell to the data
(suggesting perhaps another distribution, like the log-nor-
mal), 4
b. Mofe than one faiiure modé affecting the units,
c. Data needing a t_ correction,
d. Outliers in the data,
e. Batch problems.
Maximum likelihood does not provide a graphical display of the data.
Rank regresiion provides accurate estimates of “low” percentiles like the
B.1 life under the conditions simulated in Appendix F, even for small
sample sizes, “Low" percentiles refer to percentiles close to the time of the
first failure. Maximum likelihcod “lower” percentile estimetes have a

slight positive bias with small numbers of failures and a large number of
suspended items.

Rank regression risk forecasts are conservative (overestimate the risk) and

less precise, when computed with few failures and a couple of thousand
suspensions. Maximum likelihood risk forecasts are more accurate and
precise than are rank regression risk forecasts with small failure samples.

Both rank regression and maximum likelihood tend to overestimate £ with
small failure samples. (The slope on the Weibull plot is too steep) This
positive bias decreases as the number of failures increases. :

Confidence intervals on the Weibull parameters 8 and » based on rank
regression estimates are not availahle, Statistical hypotheses about and n .
(e.g. Is 8 = 1, implying the fuilure mode is random or memoryless?) cannot
be tested using these estimates. Exact or approximate (large sample)
confidence intervals on the Weibull parameters 8 and 5, based on the
maxitaum likelihood estimates, are available for all commonly occurring
forms of censored data. Staustlcal hypotheses about 8 and 7 can be tested
using these estimates.
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APPENDIX H

WEIBULL PARAMETER ESTIMATION
COMPUTER PROGRAMS

Enclosed are program listings for estimatirzg the Weibull distribution for data containing
both complete and censored samples. T'wo programs are provided, one in BASI® and one in
FORTRAN, both of which were developed for and witl run on a TRS80 Modal | or 11l
microcomputer. They take approximately 10K bytes of RAM; but, in the case of the FORTRAN
program, will require a FORTRAN compiler, at least one disk drive, and 48K memory.

Botli programs will. estimate the parawaeters of a Weibull distribution by the rank

regression and maximum likelihood technique. Hence, they can be used to solve many of the

problems and examples in this Handbook. Of course, use of the programs beyond this Hnndbnnk
can be maie; however, first the programs should be checked thoroughly by the user.

The programs run in the “immediate” mode, i.e., the user is prompted for tuput, with no
printout options. The programs can be used to generate estimates of the Weibull distribution
parameters for samples of size less than or equal to 100. If more than 100 failures are to be input,
the dimension statements at *he front of both programs should be increased.

If a histogram of a suspension population is available, along with the failure times of
interest, a Weibull analysis can be produced for quite large samples. The histogram is input bar
by bar and the programs assign the midpoint time of each bar to all of the units in the bar.

Of -pecial note is the maximum tikelihood parameter estimation capability in both
prograni. These programs illustrate the solution .of the maximum likelihood equation
(Appendix 1)..3) by the use of the Newton-Raphson iteration procedure. '

It should be noted that, for those example cases that are run with histograms from this
Handbook, the same answers as given in the Handbook may not be achieved. The parameter
estimates should be close, however, and will only be different because of the histogram input in
the case of these programs, where the individual times on each ampended unit were used for the
examples in the Handbook.
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510

............
........

Listing 1. BASIC Program for Weibu!l Parometer Estimation

DIM IS(1OO)LRATOOLALO0), RO(T00)., 1T (100), X Z(100)
DIM VX0 IEN(160), TTC100),V(100), 12(100),X(100)

IP -0

IM 0

PRINT“ARE YOU INPUTTING A HISTOGRAM OF SUSPENSIONS?”
PRINT“ANSWER Y OR N”

INPUT AS$

IF A$="N" GOTO 310

IP=1

PRINT“AN INTERVAL SIZE OF 50 IS ASSUMED”
PRINT"0.K.?...ANSWER Y OR N"

INPUT A$

IF A$ < > “N” GOTC 170

PRINT“PLACE THE INTERVAL SIZE YOU WILL USE IN”
PRINT“CC 1-10 W/DECIMAL”

INPUT PE

PRINT“PLACE THE NUMBER OF ELEMENTS IN EACH INTERVAL OF”
PRINT“THE HISTOGRAM IN CC 1-10 W/DECIMAL"

PRINT“USE -99. TO INDICATE THE END"

‘M=0

M=M+1

INPUT XI

IF XI = -99. GOTC 250

IN(M)=XI: GOTO 210

MM=M-1

FOR I=1 TO MM: PRINT IN(I); : NEXT I:PRINT

IM=0

FOR J=1 TO MM

TI(J)=PE/2.+(J-1)*PE

IM=IM+IN(D: NEXT J

PRINT“INPUT THE FAILURE DATA AND SUSPENSIONS IN"
PRINT“CC 1-10 W/DECIMAL... USE -99999. TO INDICATE"”
PRINT“THE END OF DATA (NEGATIVES INDICATE SUSPENSIONS,”
PRINT“UNLESS A HISTOGRAM WAS INPUT)”

1=0

I=1+1

INPUT A(D

IF A(I) =0.0 GOTO 410

IF A(I) = -99999. GOTO 430

GOTO 360

I=I-1

GOTO 360

N=I-1

BN=N+IM

FCR J=1 TO N: AW=A(J): V()= ABb(AW) NEXT J
GOSUB 5000

TOR I=1 TO N: WU=IZ(I): X()=A(IU): NEXT I

FOR I=1 TO N: A(D=X(I): NEXT I

B1=BN+1: DJ=1.0: BJ=0.0: M=0: $X=0.0: SY=0.0: XX=0.0: YY=0.0: XY~=0.0
PRINT“PT. DATA ORDER MEDIAN RANK"
FOR K=1 TO N

TeVw VW




vomars

H20
530
540

550

560
70

S580°

581
590
€00

601. .

610
620
630
640
650
660
670
680
681
690
700
710
720
730
740
750
760
770
780
790
800
810
820
821
830
831
832
833
834
835
836
840
2000
2010
2020
2030
2040
2050
2060
2130

Listing 1. BASIC Program for Weibudl Parameter Estination (Continued)

IM 0
IF 1P 0 GOTO HR0

FOR .1=1 'l() MM

IF TI()) < A(K) 'I‘HPN M*—»lMHN(J)

NEXT J .

IS(K)=IM

BK=IM+K

IF IP=1 THEN BK=BK-1.0

IF IP=1 AND K=1 THEN DJ=(B1-BJ}/(B1- Bl\)

IF K=1 GOTO 630

IF IP=0 GOTO 630

IF IS(X)=IS(K-1) GOTO 630

DJ=(B1-BJ)/(B1-BK) ;

IF A(K) < 0.0 GOTC 660

IF A(K) =0.0 GOTO 840

IF A(K) > 0.0 GOTO 670

DJ=(B1-BJ)/(B1-BK): GOTO 720

BJ=BJ+DJ: RO(K)=BJ: RA(K)=(RO(K)-.3)/(BN +.4)
X1=LOGA(KN:YP=1./(1.-RA(K):Y=LOG(LOG(YP)): YX(K)=Y
REM PRINT: “BJ=";BJ;*DJ=":DJ;“BK=";BK;“B1=":B1
PRINT K,A(K),RO(K),RA(K)

M=M+1
SX=SX+XL:XX=XX+X1*XL:8Y=SY+Y:YY=YY+Y*YV:XY=XY+X1*Y
NEXT K

GM=M

BE=(GM*YY-SY*SY)/(GM*XY-SX*£Y)
AL=(BE*SX-S8Y)/GM:AV=AL/BE:AV=EXP(AV):ST=BE
PRINT “BETA=",8T;* ETA=";AV

R:=0.G ]

IF (XX-8X*SX/GM) < 0.0 GOTO 820

XN=XY-SX*SY/GM
DE-SQR(XX-SX*SX/GM)*(YY-SY*SY/GM))

R=XN/DE

RQ=R*R

IF RQ >1.0 THEN RQ 1.0 :

PRINT “R= ™R;* R SQUARE=":RQ

PRINT“DO YOU WISH TO DO MAXIMUM LIKELIHOOD ESTIMATION?”
PRINT“ANSWER Y(Eb) OR N(O)” .
INPUT A$

IF A$="N" GOTO 840

NF=0: PRINT“PLEASE BE PATIENT.IT'S ITERATING"”
GOSUB 2000

END

FOR I=1 TO N

TT()=ABS(A(IH

IF A(D<0.0 GOTO 2050

NF=NF+1

XZ(NF)=A()

NEXT 1

OT=.0001: NL=100: XB=BE: YA=.001: NC=0: DX=.001: DY=.01
GOSUB 3000: YB=AU
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2135
2136
2137
2140
2145
2147
2150
2160
2170
2250
2260
2270
2280

' 3010

3020
3021
3022
3023
3030
3040

3130
3140
3150

4010

4020
4030

4050
4060
4070

4100
4110
4120
4130
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240
4250
4260

Listing 1. BASIC Program for Weibull Parameter Estimation (Continued)

GOSUB 4000: XB-BB#

ON JK GOTO 2120,2150,2140,2150

GOTO 2130 _

PRINT“ITERATION FAILURE”
PRINT“BETA=":XB;* LN MAXIMUM LIKELIHOOD="YB
RETURN \

BL=XB: SU=0.0: RN=NF: FOR I=1 TO N: SU=SU+TT(){BL: NEXT I
IF IP=0 GOTO 2250

‘FOR I=1 TO MM:SU=SU+IN(I)*TII)[Bl.: NEXT I
SU=SU/RN:TL=SU|[(1.0/BL)

PRINT*MAXIMUM LIKELIHOOD ESTIMATES FOLLOW”
PRINT“BETA=";BL;* ETA="TL

RETURN :

S1#=0.0 : S2#=0.0 : S3#=0.0

IF XB>15. OR XB < =0.0 THEN XB=0.1

FOR I=1 TO N ' ,
PO#=TT(H{XB

Si#=S1#+P0O%

S2#=82#+LOG(TT))*PO#

NEXT I )

IF IP=0 GOUTO 3130

FOR I=1 TO MM : PO#=TI(I)[XB: S1#=S1#+IN(I)*PO#
S2#=828+IN(I)*LOG(TI())*PC#: NEXT 1

FOR 1-1=TO NF: S3#=S3£#+LOG(XZ(I)): NEXT I
AU=(S2#/S1#)-(S3#/NF)-(1.0/XB)

RETURN

JK=1: BB#=XB ,
IF (ABS((YA-YB)/YA)-OT) < = 0.0 GOTO 4290
IF (NC-1) < = 0 GOTO 4040

GOTO 4090

DX#=BE#

DY#=YA-YB

NC=NC+1

BB#=BB#*1.02

RETURN

IF NC > NL GOTO 4300

X2#=BB#

D2#=YA-YB

IF ABS(D2#-DY#) < .00001 GOTO 4320
BB#=X2#-D2¢*(X2#-DX#)/(D2#-DY#)

IF BB# < = 0.0 GOTO 4250

IF BB#<X2# GOTO 4190

IF BB#=X2# GOTO 4240

IF BB#>X2# GOTO 4210

IF BB#/X2# > =.6 GOTO 4250

BB#=X2#*75. COTO 4250

IF BB#/X2# < 1.4 GOTO 4250

BB#=X2#*1.25

GOTO 4250

BB#=X2#°1.02

DXu#=X2#

DY#=D2#
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Li.\‘t."r_m 1. BASIC Program for Weibull Parameter Extimation (Continued)

4270 NC NC+1

4280 RETURN

4200 JK 20 NC 2: RETURN

4300 PRINT“FAILED TO CONVERGE”
4310 JK :3: NC -1: RETURN

4320 JK~4: RETURN

5000 FOR J=1 TO N: 1Z(J)=J: NEXT J
5010 [F N=1 RETURN '
5020 NM=N-1

5030 FOR K=1 TO N

5040 FOR J=1 TO NM

5050 N1=I1Z())

5060 N2=1Z(J+1)

5070 IF V(N1) < V(N2) GOTO 5090
5080 IZ(J+1)=N1: 1Z(J)=N2

5090 NEXT J

5100 NEXT K

5110 RETURN
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4002
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4004

4005
8801

211
1007

212

’ 2001

Listing 2. FORTRAN Pr gram for Weibull Parameter Estimation (Continued)

COMMON /BLOCKU/INT. TIMEMM,IHIST

DIMENSION IS(100, RANKMD(10m,A( 100 .ORDER(100)

DIMENSION YX{100),INT(100), TIME(100),V(100)

DIMENSION 1Z(100),X(10m

DATA ANO/NY/, PFRINT/50/

IPRNT=1

IPOP=0

ISUM=0

WRITE (6,4001)

FORMAT (2X," ARE YOU INPUTTING A HISTOGRAM OF SUSPENSIONS?',
?/2XANSWER Y OR N

READ (5.4002) ANS

FORMAT (A1) :

IF (ANS .EQ. ANO) GOTO 701

IPOP=1

WRITE (6,4003)

FORMAT (2X’AN INTERVAL SIZE OF 50 IS ASSUMED,’,
?/,2X,’0.K.?..ANSWER Y OR N’) -
READ (5,4002) ANS ‘
IF(ANS .NE. ANO) GOTO 8801

WRITE (6,4004)

FORMAT (2X,’PLACE THE INTERVAL SIZE YOU WILL USE IN’,
?/2X,CC 1 - 10 W/DECIMAL"

READ (5,4005) PERINT

FORMAT (F10.0)

CONTINUE

WRITE (6,4006)

FORMAT (2X,’PLACE THE NUMBER OF ELEMENTS IN EACH'
2/,2X, INTERVAL OF THE HISTOGRAM IN CC 1 - 10,/.2X,
?W/DECIMAL . . USE -99. TO INDICATE THE END’)

M=0

M=M+1

READ (5,1000WXINT

FORMAT (F10.0) :

IF (XINT .EQ. -99.) GOTO 212

INT(M) = XINT

GOTO 211

MM=M-1

WRITE (5,3090)(INT(KL),KL=1,MM)

|

- FORMAT (1014). -

ISUM = 0

DO 2001 J=1,MM
TIME(J)=PERINT/2.+(J-1)*PERINT
ISUM=ISUM+INT(J)

CONTINUE

C INTERMEDIATE PRINT

798

WRITE(S,798(TIME(J),J=1,MM)
FORMAT(8F10.1)

C INTERMEDIATE PRINT

701

WRITE(6,2000)
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Listing 2. YI~‘()R'I'RAN Program /ui; Weibull Parameter Fstimation (Continued)

FORMAT (XINPUT THE FAILURE DATA AND SUSPENSIONS'
2/2XIN COLS 1-10 WITH DECIMAL, -99999.°
22X INDICATES THE END OF DATA (NEGATIVES'
22X INDICATE SUSPENSIONS)..UNLESS HISTOGRAM®
2/2X,WAS INPUTY) A

I=0

I=1+1

READ (5,101) A(D)

FORMAT(F10.0)

IF (A(D .EQ. 0.00GOTO 3

IF (A(]) .EQ. 99999)(:0’1‘0 2

GOTO 1

I=11

GOTO 1

N=I-1

BN=N+ISUM

DO 4 ol:l.N

V()=ABS(A()

CALIL ORD(V,N,IZ)

DO 22 I=1,N

ISUB=1Z()

X -=A(ISUB)

DO 23 1=1,N

A=XD

BNI1=BN+1

I)J=I.0

RI=0.0

M=0

SUMX=0.0

SUMY=0.0

SUMXX=0.0

SUMYY-0.0

SUMXY-=0.0

WRITE (6.990)

FORMAT (2X,;'PT.4X,'DATA'4X,ORDER’ 4X, 'MEDIAN RANK")

DO 630 K=1,N

ISUM=0

IF (IPOP .EQ. 0)GOTO 632

DO 631 J=1,MM

IF (TIME(J) .LT. A(KNHISUM=ISUM+INT(J)

CONTINUE

IS(K)=1SUM

BK=ISUM+K

IF (IPOP .EQ. 1)BK=BK-1.0

IF(IPOP .EQ. 1 .AND. K .EQ. l)DJ (BN1- BJ)/(BNI BK)

IF{(K .EQ. 1) GOTO 3911

IF (IPOP .EQ. 0) GO TO 3911

IF(IS(K) .EQ. IS(K-1))GOTO 3911

DJ=(BN1-B.J)/(RN1-BK)

IF (A(K))390,900,400

DJ=(BN1-BJ)/(BN1-BK)

GOTO 630
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-; Listing 2. FORTRAN Program for Weibuil Parameter Estimation (Continued)
'(. 400 BJ=BJ+DJ

o 3l | ORDER(K)=BJ

5 ' RANKMD(K)={ORDER(K)-.3)/(BN+.4)
o2 XXX=ALOG(A(K))
e . YPRIME=1./(1.-RANKMIK))
X Y=ALOG(ALOG(YPRIME))
. YX(K)=Y
> WRITE(6,300)K,A(K),ORDER(K),RANK MD(K)
= 300 FORMAT (I6,F10.1,F10.4,F12.5)
.;;‘j M=M+1
Cxs SUMX=SUMX+XXX
N SUMXX = SUMXX + XXX * XXX
bl SUMY=SUMY+Y
“ed SUMYY=SUMYY + Y * Y
Ny SUMXY=SUMXY + XXX * Y
j 630 CONTINUE
-~ C WRITE (6,800)SUMX,SUMY,SUMXX,SUMYY,SUMXY
~x 800 FORMAT (2X,'SUMX="E20.7,SUMY="E20.7,/,2X,
- 7SUMXX=",E20.7,'SUMYY=",E20.7,'SUMXY=",E20.7)
. GM=M
2y BETA=(GM*SUMYY- SUMY‘bUMY)/(GM'SUMXY-SUMX'SUMY)
s ‘ ALPLN=(BETA*SUMX-SUMY)/GM
ol AVED=ALPLN/BETA
ket ETA=EXP(AVED)
) WRITE(6,3101)
L 3101 FORMAT(2X, THE FOLLOWING ESTIMATES ARE RANKED REGRESSION’,
oy 2ESTIMATES")
| 3;. WRITE (6,3100)BETA,ETA
2 S '3100 FORMAT (/,2X,'BETA="F10.4, ETA="E20.7)
S R=0.0
Bai IF(SUMXX-SUMX*SUMX/GM) .LT. 0.0)GOTO 7871
- XNUM=SUMXY-SUMX*SUMY/GM
. DENOM=SQRT((SUMXX-SUMX*SUMX/GM)*(SUMYY-SUMY*SUMY/GM))
: 1 R=XNUM/DENOM
3 IF (R .GT. 1.0)R=1.0
K- 7871 RSQ=R*R
~ 8 WRITE(6,3200)R,RSQ
3200 FORMAT (2X,’R="F10.5,R**2="F10.5)
WRITE (6,5001)
8 ¥ 5001 FORMAT (2X, DO YOU WISH TO DO MAXIMUM LIKELIHOOD ES'I‘IMATION”’.
XA ?7/2X,ANSWER Y OR N')
g READ (5,4002) ANS
- IF (ANS .EQ. ANO) GOTO 900
ot IHIST=1POP
s CALL MAXL(A,N,IPRNT, BML TML,BETA)
A 900 CONTINUE
W STOP
R END
x SUBROUTINE ORD(A,N,IZ)
, -~ DIMENSION A(1),I1Z(1)
5 DO 1 J=1,N
,f
:‘ '
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Listiﬁg 2. FORTRAN Program for Weibtull Parameter Estimation (Continued)

lZ(J)"J

IF (N .EQ. 1) RETURN
NM - N -1 '
DO 2 K=1I,N

DO 2 J=-1,NM

N1-1Z(D)

N2=1Z(J+1) _
IF (A(N1) .LT. A(N2)) GOTO 2
1Z(J}+1)=Nl

1Z())=N2

CONTINUE

RETURN

END
SUBROUTINE MAXL(T,NUM,IPRNT,BML,TM!,BETA)

DIMENSION TT(100),T(1),XX(100),INT(1€0),TIME(100)
COMMON /BLOCK/TT,NSAMP
COMMON /BI OCKI/INT,TIME,MM,'HIST
COMMON /BLOCK2/XX,NFAIL
IH=IHIST '

NSAMP=NUM

NFAIL=0

DO 1 I=1,NSAMP

TT(DH=ABS(T(I})

IF(T(I) .LT. 0.0D0)GO TO 1
NFAIL=NFAIL+1

XX(NFAIL)=T(I)

CONTLVUE

TCL=.007001

NLIM=100

X=BETA

PB=0.001

NCT=0

DELX=.001

~ DELY=.01

PRN= AUX(X)

IF (IPRNT .EQ. 1)WRITE(6,206)X,PRN

FORMAT((2X,” BETA="E15.5," LN MAXLIKELIHOOD=",E20.7)
CALL SLOPE(X,PB,PRN,DELX,DELY,TOL,IS7G,NCT,NLIM,1)
GO TO (30,50,40.50),ISIG

GO TO 30

TF (IPRNT .EQ. 1)WRITE(6,205)FPR,PB,PRN

FORMAT(2X,” ITERATION FAILURE ’,3E20.7)
IFLAG=1

RETURN

BML=X

SUM=0.0D0

RN=NFAIL

DO 110 I=1,NUM

SUM=SUM+TT(I)**BML

IF (IHIST .EQ. ¢} GO TO 112

DO 111 I=1,MM

SUM=SUM+FLOAT(INT(D))*TIME(I)**BML
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Listing 2. FORTRAN Program for Weibull Parameter Estimation (Continued)

SUM -SUM/RN
TML: SUM**(1.0/BML)

WRITE(6,996) :
FORMAT(2X,” MAXIMUM LIKELIHOOD ESTIMATES FOR THIS CASE FOLLOW)
WRITE(6,995)BML TML

FORMAT(2X,” BETA="F10.3, ETA="F20.2)

RETURN

END

FUNCTION AUX(X) -

DIMENSION T(100),XX(100),INT(100), TIME(100

COMMON /BLOCK/T,N

COMMON /BLOCK1/INT,TIME,MM,IHIST

COMMON /BLOCK2/XX,NFAIL

2ZZ=NFAIL

SUM1=0.0

SUM2=0.0

SUM3=0.0

fF(ABS(X) .GT. 150 .OR. X .LE. 0.0)X=0.1

DO 10 I-1,N

SUM1=SUMI+T(D**X

SUM2=SUM2+ALOG(T(D)*T()**X

IF (IHIST .EQ. 0)GO TO 11

DO 20 I=1MM

SUM1=SUM1+FLOAT(INT(I))*TIME(D**X
SUM2=SUM2+FLOAT(INT(1))* ALOG(TIME(I))* TIME(D)**X

DO 15 1=1,NFAIL

SUM3=SUM3+ALOG(XX(D)

AUX=SUM2/SUM1-SUM3/2ZZ-1.0/X

RETURN

END '
SUBROUTINE SLOPE( X , YA , YB ,X1,DEL1,TOL,JK,NCT,NTIME,LOOP
JK=1

IF((ABS((YA-YB)/YA))-TOL)6,6,3 oy
IF(NCT-1)1,12

X1=X

DEL1=YA-YB

NCT=NCT+1

X=X*1.02

GO TO 9

IF(NCT-NTIME)5,5,4

X2=X

DEL2-YA-YB

IF (ABS(DEL2-DEL1) .LT. 1.E-06) GO TO 20
X=X2-DEL2*(X2-X1)/(DEL2-DEL1)

IF(X)8,8,10

IF(X-X2)11,7,12

IF((X/X2)-.6)13,13,8

X=X2*.75

GO TO 8

IF((X/X2)-1.4)8,14,14
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Listing 2. FORTRAN [Program for Weibull Parameicr Estimation (Continued)

14 X=X2*1.25
I ANMEAN ]
7 X-X2*1.02
8 Xi1=X2
DEL1=DEL2
NCT=NCT+1
GO TO 9
6 JK=2
NCT=2
GO TO9
4 WRITE(6,100)LOOP,X,YA,YB :
100 FORMAT(1HO,CONVERGENCE FAILURE IN LCOP'I2/1H /X ='E14.84X, YA='
?E1484X,’YB ='E148 /)
JK=3
NCT=1
9 CONTINUE
RETURN
20 JK=4
RETURN
END
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APPENDIX J -

ANSWERS TO PROBLENS

1. CHAPTER 1 ANSWERS: Nons

2. CHAPTER 2 ANSWERS

2.1 Problem 2-1

a. #=35 n=200hours

L. Yes. Wearout or fatigue failures usually have ste

c¢. B,y =54 hours.

Rank

Time

(hr)

QWOW-ID U N e

-

*From median rank table

See Figure J.1.

85
135
150
150
190
200
200
240
240
250

199

Median®
Ranks

6.6
16.2
25.8
35.5
45.1
54.8
64.4
74.1
83.7
93.3

ep slopes
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Figure J.1. Problem 2.1
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2.2 Problem 2-22 Answers

a. 807 n=29hours
b. Infant Mortality

& PE RS SN P’ a”s B

.(-:-—vv:-:'.ﬁ:%.ém\:vm.vy.“ﬂV'.\‘;'i".'v.v'-‘ b W R i ovie AR e e A S M N R

¢. Serial numbers are very close. A batch problem mev be suspect.

........

;

Median
Rank Comment New Rank Rank
' 1 Failure 1 8.3%
2 Failure 2 20.2
3 Suspension
4 ©».spension
5 Failure 34! 369
(] Suspension
7 Fa.'ure 5.32 59.5
8 Failire 7.8 82.1

(N_+ 1) -- (previous rank order number)

.

!»Rank Increment =

1+4 5

=8-2<-7=14

| =2+ 14 =34

"llhnk Increment =9 — 3.4= 56 = 1.87

1 + (number of items beyond present suspended items)

| 1+2 3
« kew Rank =34 + 1.87 = 527 =~ 53
» ‘It\lew Rank =33+ 187 = 717 =~ 7.2
i See Figure J.2.
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Figure J.2. Problem 2.2, Infani Mortality ‘
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2.3 Prcblem 2-3: Answers

Median*
Rank Time _Rgr_t_li'_c_
' - 1 90 hr 8.3
- 2 130 20.1
3 165 J2.0
4 220 44.0
' 5 275 55.9
6 370 67.9
7 525 798
8 1,200 91.7

*From median renic table
Using the formula:

tﬂ ':,‘2_. (ts" tq) (tz" t])
(ts - t)) ~ (5 - t,)

o where t,= 90
' = 18
ty = 1,200

t, = 185 — __(1,700 — 185) (185 - 90)
' | 1,200 - 185) — (185 ~ 90)

1,015 - 9

- 185 - 96425

i 920

. = 185 ~ 104.8
-4

; t, = 80.2

-, : Median®
) _ Time Time — 802 :z: Rank

. :  %hr 9.8 8.3

: o 130 498 20.1

i . 165 - 84.8 32.0
b, 220 139.8 4.0

! 275 194.8 55.9

| 370 289.8 67.9

; 525 4d4.8 79.8

; 1,200 1,119.8 91.7

i See Figures J.3 and J 4.
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TOTAL OPERRTING TIME (HR)

Figure J.4. Problem 2-3, Ouverall Population
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3. CHAPTER 3 ANSWERS

3.1 Problem 3-1

(8) 'Today

.Number Time on
Engines Each Engine
20 150
20 200
20 250
20 300
20 350
{b) In Six Months
Number Time on
_Engimi Each Engire -
20 300
20 350
20 400
20 450
20 500

Therefore, additional failures =

DA _..‘ .‘,' s .-_‘.-\:_’ ...‘.’_ o .‘_- .-‘.
Fe) F).N
0.0033 0.067
0.008 0.16
0.0155 0.31
0.0266 0.533
0.042 0.84
Z = 1.909
ﬂQ F(t).N
0.0266 0.533
0.042 0.84
C.062 1.24
0.087 1.74
0.118 . 2.35
T = 6.704

6.704 - 1.909 = 4.8

. /’ l- Iv / . \\ -
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3.2 Problem 3-2: Turbine Airfoil Unscheduled Engine Removais

(a) First, overall using Figure 3.13 ponulation:

Point Data Mean Order Median Rank
47 476.000 1.34% 0.00582
48 504.000) 2.687 0.01330
58 576.000 4.128 0.02134
69 596.000 5.570 0.02937 )
60 600.000 ; 7.011 0.03741 L
61 603.000 8.453 0.04545 '
62 649.000 9.894 0.05348
72 667.000 11.455 0.06218
73 681.000 13.016 0.07088
74 684.000 14.576 0.07958
75 701.000 16.137 0.08828
76 741.000 17.697 - 0.09698
85 755.000 19.388 0.10640
86 756.000 21.079 0.11582
87 770.000 22.769 0.12525
88 806.000 24.460 0.13467
89 812.000 26.151 0.14409
990 821.000 27.841 0.15352
91 845.000 29.532 0.16294
93 850.000 31.242 0.17247
100 855.000 33078 0.18271
then, using the Figure 3.14 population ‘\_,'-
Point Lita Mean Order Median Rank
3 584.000 1.067 0.02442 -
4 701.000 2.133 0.05839
6 770.000 3.240 0.09361
7 812.000 4.346 0.12884 - -~ .. . -
8 821.000 5.452 0.16407
9 845.000 6.558 0.19930

The associated Weibull Plots are in Figures J.5 and J.6; they “seem” different. However,
Figure J.7 illustrates the total population Weibull with confidence bounds (from Chapter 7);
since the Location A Weibull lies sutside the All Locations Weibull, the two Weibulls are

significantly different.
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(b} For the entire population, in 12 months

Number of

C'umulative

Units (N) Units t t 360
9.0 9.0 50.0 410.0
7.0 16.0 150.0 510.0

14.0 30.0 250.0 610.9
9.0 390 350.0 710.0
7.0 46.0 450.0 810.0
9.0 55.0 55%. 910.0
9.0 64.0 650.0 1,010.0
8.0 72.0 750.0 1,110.0
7.1 79.0 850.0 1,210.0
8.0 85.0 650.0 1,310.0
6.0 91.0 1,050.0 1,410.0
6.0 97.0 1,150.0 1,510.0
7.0 104.0 1,250.0 1,610.0
6.0 110.0 1,350.0 1,710.0
7.0 117.0 1,450.0 1,610.0
8.0 125.0 1,550.0 1,910.0
7.0 132.0 1,650.0 2,010.0
8.0 140.0 1,750.0 2,110.0
8.0 148.0 1,850.0 2,110.0
4.0 152.0 1,950.0 2,310.0
3.0 155.0 2,050.0 2,410.0
2.0 157.0 2,150.0 2,510.0
1.0 158.0 2,250.9 2,610.0
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0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.2
0.3
0.5
0.7
0.9
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

’

Lad A Al ik st fafl g sl g

Gt) =

F(t+360)-F(t)

MR R

Foevaen) ~ 1 - K(t)  G(t)-N

0.0 0.0

0.0 0.0 0.1
0.0 0.0 0.5
0.1 0.1 0.7
0.2 0.2 1.1
0.3 0.3 2.4
0.4 0.4 3.8
0.6 0.6 4.8
0.8 0.8 5.3
0.9 0.9 5.3
1.0 1.0 5.7
1.0 1.0 59
1.0 1.0 7.0
1.0 1.0 6.0
1.0 1) 7.0
1.0 1.0 8.0
1.0 1.0 7.0
1.0 1.0 8.0
1.0 1.0 8.0
1.0 1.0 4.0
1.0 1.0 3.0
1.0 1.0 - 2.0
1.0 1.6 _lo

T = 96.6

v
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\._‘,'-. For the entire populaiion, in 24 months
A |
E Number of  Cumulatioe
i;:}; Units (N) Units ! 1720
e .
g 9.4) 9.0 50.0 7700
~2 7.0 16.0 150.0 870.0
14.0 30.0 250.0 970.0
9.0 39.0 3500 1,070.0 .
7.0 16.0 4500  1,170.0
9.0 55.0 550.0 - 1,270.0
90 64.0 650.0  1,370.0
8.0 72.0 7500 1,470.0
7.0 79.0 850.0  1,570.0
6.0 85.0 950.0  1,670.0
6.0 91.0 1,050.0  1,770.0
6.0 97.0 1,150.0  1,870.0
j 7.0 104.0 1,250.0  1,970.0
N4 6.0 110.0 1,350.0  2,070.0
7.0 117.0 1,450.0  2,170.0
8.0 125.0 1,550.0  2,270.0
o 7.0 132.0 1,650.0  2,376.0
8.6 140.0 1,750.0  2,470.0
Y 8.0 148.0 1,850.0  2,570.0
4.0 152.0 1,850.0  2,670.0
3.0 155.0 2,050.0  2,770.0
2.0 157.0 2,150.0  2,870.0
1.0 158.0 2,250.0  2,970.0

\
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0.0
0.0
0.0
0.0

© 0.0

0.0
0.0
0.1
0.2
0.3
0.5
0.7
0.9
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

ks 720)

0.1
0.2
0.4
0.6
0.7
0.9
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
L0
1.0
1.0

. - . . . - - wymy - -
ARG SE P A S ISR O T R iR P R LIS
. - - - - - " - - - . . L . . - . .

G(t) ,

Feev720) ko)

T FI TGN
0.1 1.1
0.2 1.6
0.4 5.3
0.6 5.1
0.7 5.2
0.9 7.9
1.0 8.7
1.0 7.9
1.0 7.0
1.0 6.0
1.0 6.0
1.0 6.0
1.0 7.0
1.0 6.0
1.0 T
1.0 8.0
1.0 7.0
1.0 8.0
1.0 8.0
1.0 4.0
1.0 3.0
1.0 2.0
1.0 1.0

S = 1288
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,::f.‘ For the population at Location A, in 12 months:
- Number of  Cumulative
R Units (N) Units { L1360 (¢} F(t+:360) Goe) G(t).N
e —" o
.::*.: _ : 0.0 0.0 50.0 4100 9.0 0.0 ' 0.0 0.0
. 0.0 0.0 1200 5100 00 - 00 0.0 0.0
A 0.0 0.0 250.0 610.0 0.0 0.0 0.0 0.0
i _ 1.0 1.0 - 350.0 710.0 00 - 0.0 . 0.0 0.0
>y N 0.0 1.0 450.0 810.0° 0.0 0.1 01 00
&y 0.0 1.0 550.0 910.0 0.0 04 04 - 0.0
‘; 1.0 .20 650.0  1,010.0 0.0 0.7 07 0.7
k } , 1.0 _ 3.0 7500  1,110.0 0.1 1.0 1.0 1.0
> 20 5.0 8500  1,210.0 0.2 1.0 1.0 - 2.0
20 7.0 6500 1,2100 0.5 1.0 1.0 20
20 9.0 1,050.0  1,410.0 0.9 1.0 1.0 2.0
20 11.0 1L,150.0  1,510.0 1.0 1.0 1.0 20
2.0 13.0 11,2500 1,6100 1.0 10 1.0 2.0
1.0 149 1,350.0 ° 1,710.0 1.0 1.0 1.0 1.0
(10 15. 1,450.0 1,810.0 1.0 R ¥ 1.0 1.0
20 17.0 1,550.0 1,910.0 1.0 1.0 1.0 20
1.0 18.0 1,650.0 2,010.0 1.0 1.0 1.0 1.0
1.0 19.0 1,750.0 2,110.0 1.0 1.0 1.0 | 1.0
20 21.0 1,850.0 2,210.0 1.0 1.0 : 1.0 , 2.0
2.0 23.0 1,950.0 2,310.0 1.0 1.0 1.0 2.0
20 © 25.0 2,050.0 2,410.0 1.0 1.0 1.0 2.0
I = 237
213
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‘ o} For the puopulation at Location A, in 24 months:
K -
L Number of  Cumulative ‘ : y
\ Units (N) Units ¢ t+720 k) Feevy720) G(t) G(t)N N
: 0.0 0.0 50.0 7700 0.0 0.1 0.1 - 0.0
:o 0.0 0.0 150.0 870.0 0.0 0.3 0.3 0.0 .
P 0.0 0.0 250.0 970.0 0.0 0.6 0.6 0.0
1.0 1.0 350.0 1,070.0 0.0 0.9 0.9 .09 . Lo
0.0 1.0 450.0 1,170.0 0.0 1.0 1.0 0.0 a ~
00 1.0 - 550.0 1,270.0 0.0 1.0 1.0 0.0 T
1.0 20 : 650.0 1,370.0 0.0 1.0 1.0 1.0 o
1.0 3.0 . 750.0 1,470.0 - 0.1 1.0 1.0 1.0 o
20 5.0 850.0 1,5670.0 0.2 1.0 1.0 20
2.0 7.0 950.0 ©  1,670.0 0.5 1.0 1.0 2.0
20 8.0 1,050.0 1,770.0 09 1.0 1.0 2.0 _
2.0 11.0 1,150.0 1,870.0 1.0 1.0 1.0 2.0 .
20 13.0 1,250.0 1,970.0 10 - 1.0 10 20 N
1.0 140 - 1,3500  2,070.0 1.0 1.0 - 1.0 L0 ST
r 1.0 15.0 1,450.0 2,170.0 1.0 1.0 1.0 10 : \
20 17.0 1,550.0 © 2,270.0 1.0 1.0 1.0 2.0
1.0 : 18.0 1,650.0 2,370.0 1.0 1.0 1.0 1.0 -
1.0 19.0 1,750.0 2,470.0 1.0 1.0 1.0 1.0
2.0 21.0 1,850.0 2,570.0 1.0 1.0 1.0 2.0
20 23.0 1,950.0 2,670.0 1.0 1.0 : - 1.0 2.0
20 25.0 2,050.0 2,7700 . 10 1.0 1.0 20
S =249
i.e., all of them will have failed and will have been fixed. ' : : .
33 Problem 3-3 ot
(A) t= LOOOF() = 1—e “"equal 1 — e V""" »
F(L000) = 0021 - ' N
Number of failures = (0.0231) (1,308) = 30 .
- (Bt = 2,000 :
F(2,000) = 0.0544 b
Number of failures = (0.0544) (1,308) = 71 l__ T
(©)t = 4,000 ' - ' A
F(4,000) = 0.1253 ~
Number of failures = (0.1253) (1,308) =164 s
. L H ..\\.;, \:‘.-.
(D) Inspection at 1,000 hours. makes units “good as new” ' f )
P (failure at 4,000 hours) = F(1,000) + F(1,000) + F(1,000) + F(1,000) . 3
= 0.0231 + 0.0231 + 0.0231 + 0.0231 Dz
= 0.0924 Ll
\ Number of failures = (0.0924) (1,308) = 121 _ b
: ; ‘.~__\'..
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(E) Inspection at 2,00 hours
P (failure at 4,000 hours) FO00) + F(2,000)

0.0544 = 0.0544 + 0.1088
Number of failures = (0.1088) (1,308) = 142 '

- MProblcmH

Start with the top row of random numbers, and note that one’s answer will vary dependmg
* on the random number string.

(1) Engine at 100 hours

(YA

- 96567 (en(—-m,—))
28,831.2 hours =" 1,149 months from present ‘
= 4,99 (Qn(ﬁw))”m !

4,853.2hours = 190 months from present _ ‘ ' |
|

r. = 1128 (t(=dp)) "™ -

1,1189hours = 40 months from present

1,000 hour inspection is 900 hours or 36 months from present

Reset Méde A and C to “o"

- 96,587, (tn( +))'™ -

24,877 hours = 995 months from last inspection
Fe = 1126 ("'(T—wr))""
789 hours = 31 monthe from last inspection

2,000 hour inspection is 40 months from last inspection

Past 48 months pt. of interest
"\ (2) Engine at 200 hours
- 96587 (tn (=S3ex))""™ -
219,214 hours = 8,760 months from present
t
5 = 4998 (tn (=5757))"™" -
!
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4,319 hours = 164 months from present

F. = 1126 (tn (T—_-—‘(TE,T))"’" -

1,122 hours = 36 months from present

1,000 hour inspection is in 800 hours = 32 mbnt_hs from present

Reset Mode A and C to “0"

(L)

Fo = 96587 (n (=tges))'™ -

3,994 hours = 159 months from last inspection -

F. = 1,126 (Rn (-l—_—h-.m))'/“ -
915 hours' = 36 months from last inspestion
2,000 hour inspection is 40 months from last inspection
(3) Engine at 500 hours

[V )

F,‘v - 96,587 (Qn (T—_RO'nﬁ')) = 89,877 hours = 3,575 months from nresent

1/2Km

Fu = 4,996 (!n (T:%WJT)) = 3,566 bours = 122 months from present
154

F. = l‘.lzﬁ (!n (_l—:%)-ﬁf)) - 1,025 hoqu = 21 months from present

1,000 hour inspection is in 500 hours = 20 months

Reset Mode A and C to “C”

Fy = 96,587 (Qn_ (-r:lum))"'" = 9,965 hours = 308 months frcm last inspection
F. = 1,128 (!n (ﬁnﬁ))'ﬂ" = 1,188 hours =~ 47 months from last inspection

2,000 hour inspection is 40 months from last inspection

216
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(4) Engine at 700 hours

F, = 96,587 (Qn (1—_%))' " 92,488 hours = 3,671 months from present

Fy = 4,99 (Qn (—l—_—‘b—s—g—‘;))‘ - 4,813 hours = 164 months from present
F. = 1,128 (Rn (l—_ﬁi—))'. = 1,072 hours = 14 mouths from present

1,000 hour inspection is ir 300 hours = i2 months

Reset Mode A anc C to “0”

¥o = 96587 (tn (=S gzr))"™ = 231776 hours = 9,270 months fro e inspection
F. = 1,18 (!n (Tﬁm))'m = 1,197 hours = 47 months from Ja=t inspection

2,000 hour inspection is 40 months from last inspection

"{5) Engine at 900 hours

P\ = 96587 (tn (—=fz5))"™ = 70530 hours = 2,785 months from present

Fu = 4996 (tn (;=15)) "™ = 7480 bous = 253 monthe from present

P = 1126 (tn (;=L35r))"™ = 1008 hours = 4 monthe from present

1,000 hour inspection is in 100 hours = 4 months

Inspection before failure — Fg = 4.33 months actually
Reset A and C to “0”
Fu = 96587 (tn (=Jzz5))""™ = 46077 hours = 1,803 months from "t inspection

f’.. = 1,128 (!n (_1———10'.7@'))”“ = 1,185 hours .= 47 months from last inspection

2,000 *our inspection is 40 months "om last inspection

Inspection before failure
A) No Failures B) 5 engines fail without 1,000 hour inspection
1 additional engine fails before the 2,000 hour inspection
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4. CHAPTER 4 ANSWERS
4.1 Problem 4-1

2=<p=<bH
le':ﬁl = 2;’2: 5

Consider the case when g, = 2: '

2 2 2 2 ) 42y,
mﬂ[lOO + 110° + 125° 4+ 150° + 90° + 40 ]lh = 187.0

2
Let T,, = Present Time P.ow = Prob of Failure at
Present
Tio = Time in 100 Hours - P,y = Prob. of Failure at 100
: Hours .in Future
Engine T '
¢ noe Prow L) Piog
1 40 0.045 140 . 0.429
2 90 0.207 190 0.644
3 100 T 0.249 200 0.681
4 110 0.293 210 0.717
5 0 0 100 0.249
6 0 0 100 0.249
0.794 2.969

Thus, one would expect 2.969 — 0.794 = 2.18 additional failures during the next year.

Consider the case when 8, = 5:

L] 5 BY-W send 5 5
my = [AOEH 10+ 125+ 350° 3 90" 4 40 _

2
Kngine T . '

o Prow T 100 Py

1 40 0.0015 140 0.540

2 90 0.082 19 0972
3 100 0.134 - 200 _ 0.990

4 110 0.207 210 0.997

5 .0 0 100 0.134

6 0 0 100 0.134
04245 3767

Thus, ane would expect 3.767 — 0.4245 = 3.34 additional failures during the next year.
So:

As g increases from 2 to 5, the number of expected failures during the next year increases from
2.18 t0 3.34. '

42 Problem 4-2
The predicted design B.1 life = 1000

Assume § = 3,
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r 1 ‘ 4
. Theny = [5(1500) + 5(2000)

1

1" = 38457

Let L. = B.1 life predicted from the Weibayes analysis of the data.
Then:

0.001 = 1 ~ e~(L/3845.7)3

e~ (13845703 . 3 999
~(L/3845.7)% = In 0.999

> L = 3845.7 (~In 0.999)}/3

. L=2384.6

Since the Weibayes analysis predicts B.1 life = 384.6 (which is less than the predicted design
value of 1000), one can conclude that the present data is insufficient to increase the predicted
design life.

219
N " b ot i N g g
. - ' / ’ PR g




— - . - T T . y

| .v-. -n\n’x-v-r.*%*Wf".’?(‘.':“.\'_".‘.'t‘.'t’.\"_‘%‘. '_\‘_x"_-:.'-'./l R ORSLORS GRS AR A AL NN AN AR RSN AN
o
B

5. CHAPTER 5 ANSWERS
5.1 Problem 5-1 Substantiation Testing

Enter Table 5.1 with a sample size of 20 and # equal to 1.5. The corresponding entry is 0.237.
The required test time per bearing is:

0.237 X 3000 hours = 711 hours.

Thus, the zero failures test plan is: run 20 bearings for 711 hours each. If no bearing fatigue
failures occur during the test, then the failure mode has been significantly improved, with 90

confidence.

5.2 Problem 5-2

The reliability goal may be stated mathematically as R(2300) = 0.95, which means that the

reliability of the vane system is 0.95 (95% succeeding, 5% failing) at 2300 cycles. First, convert
7+ this reliability goal to a characteristic life g al: substitute t = 2300 cycles; R(t) = 0.95, and 8 = 3
#7 i into equation 5.2. The results are: :

- 2300cycles 173
7= T=In( oL‘T.ss I
or 5 = 6190.2 cycles.

The number of test cycles per turbine was not fixed. The only constraint was that it should not
exceed 5000 cycles. The table below shows the number of turbines required, assuming 3000,
4000, and 5000 test cycles accumulated on each.

B Test Cycles Ratio of Test Cycles Number of Turbines
RN per Turbine to n = 6190.2 Required — Table 5.2
NASE
§\_; ' 3000 0.48 22
g ; 4000 0.65 9
2N ..5000 . .. . 081 - - - - 5
2NE
o~ Either of these test plans will satisfy the requirements of the test. However, the plan to test
XA, 5 turbines for 5000 cycles each requires the fewest total test cycles. (The first plan requires

22 X 3600 = 66,000 cycles, the second plan requires 9 X 4000 = 36,000 cycles, and the third plan
requires 5 X 5000 = 25,000 cycles)

[4 éi’h‘n .

$ ‘
i‘:‘ ’ Therefore, the test plan that satisfies the test requirements and that requires the fewest total
e test cycles is: test 5 turbines for 5000 cycles each. If all turbines complete the test, with vane
:-&"‘.1 ! erosion within the allowable limits, then no more than 5% of the turbines will be rejected for
-l excessive erosion prior to 2300 cycles, with 90 confidence.
L)
=5 53 Problem 53
=k
- g In the terminology of Section 5.9,
%
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B = 25,
t = 14000 hours,
n, 2000 hours,
. 1 4000 hours,
L «, o1,
s and « - 09
. L)
) Zquations 5.7 204 & 4 will now ha anlved far r.2nd n, using the method of Section 5.9.
Y. R Step I: p, =1 - exp(~(1000/2000)>%) = 0.162
) 4’:‘, i , Py =1 — exp(—(1000/4000)%%) = 0.031
g .
o Step 2: Setting ry = 0, n,, the value of n satisfying equation 5.3, was found to be 14. n,, the
. value of n satisfying equation 5.4, is 3. '
14 X 0.162
2= 3 xo031 — 244
0.162  _ .
b= 003 = 5.23
, ' Step 3: Since, for r, = 0, a is greater than b, r is increased by 1.
f Forr,=1,n,= 23 and n, = 18, giving a = 6.677.
; Step 4: a is still greater than b, for r,= 1. Forr, =2 n, = 31 and n; = 36, giving a = 4.5.
‘ Step 5: Forr, = 2, a is less than b, so the process of increasing r is stopped here. The a-ratio
el for r, = 2 is 4.5 and is closer to b = 5.23 than the a-ratio for I, = 1. So, the final value of r, is 2.
Y _
- Step 6: The final value of n is
; n, + n,
bl - 31+36forr=
e, = gfrn, e
_~H
i n = 335
O F -
XK orn = 33 (rounding 33.5)
"‘ t v\' . .
_8 The final test plan is: test 33 units for 1000 hours. If 2 or fewer units fail while on test, the test is
it ' passed. Note that the additional requirement in this plan has more than doubled the number of
~ N HE units and test time required. (The zero-failures test plan required that 14 units be tested
%] 1000 hours each.) .
.
'
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6. CHAPTER 6 AﬂSWERS: N('ulu-
7. CHAPTER 7 ANSWEBS
7.1 Problem 7-1
Using equation 7.1,
1.5e! OTHLHIAN g o | 5 QOTM 16450/ 400
1.22 < ﬁ =< 1.84 is the 90, conﬁdénce interval for g.-
Usfng equation 7.2, | . .
mx)el I.(ﬁl.ﬁfﬁ)/l.h 40) < n < 2000 e(l.ﬂ Ml.l“.-'ﬂ/l.ll “

16687 < p < 2399 is the 90, confidence intervel for n.

7.2 Problem 7.2
Using equation 7.3a, b, ¢, and d.

7.3a U = (In (1500) — In (2000)) - 1.5 = — 0.4315
~7.3b Var (U) = [ 1.168 = (-0.4315)? (1.1} = (0.1913) ( -0.4315) ] ~}o- = 0.0364

7.3¢ U, = (—0.4315) ~ (1.645) (0.0364}, 5 = —0.7454

Uy = (—0.4315) + (1.645) (0.0364)2 = ~0.1177
7454
73de """ < R(1500) < -
Therefore, 0.411 < R(1500) < 0.622

For n = 40, from Appendix Tables I11.2 and 11.3

Fl.o.w = 0.001 Fl'om = 0.072 ) -
Faoos = 0.008 Fioes = 0.113
Fiojm . = 0.020 F 3,095 : = (0.149

8 = ‘1.5 ¥ = m
Usiug equation 7.4

1 (xS
tioos = 2000[ln-i-:(—)—0-61—] = 20.01

taoon = 2000 Inr—g o] = 8021




" a
e

PR Ve

4.
s e

»‘n'-“--'b-k‘w ‘e

v am B 4 M e am

"um.'. ‘."NN’III\ | | ;.:-‘ e 14816

Linw, 20()()!“14_'_.4 -
b = 200 Inp—gypr ] = as

o = 2000in—der ] = 592741
307 confidence intervals on first 3 failures:
Failure 1:  20.01 < Time < 354.81
Failure2:  80.21 < Time < 486.33
l"ailur"e 2: 148.36 < Time < 592.74.
7.4 Probiem 7.4
Use Weibull-Thorndike Chart
Figure 7.6 (8 = 1)
T/n = 4000/1000 = 4.
We want 0.9 probability bands on the number of failures occurring at T = 4000 hours.
Entering x-axis at T/n = 4,
a. Whenp=0.05C=0
b.‘ Whenp =095,C =17.
Thus, a 0.9 probabilit; band on number of failures by T = 4000 hours is (0,7).

7.5 Problem 7.5

Steps 1 and 2: Completed on Figure 4.8

g = 159 7 = 258.0

Step 3: MTTF = 1/10 (51 + ... + 451) = 1/10 (2261) = 226.1
Step 4: On graph. , .

Step 5: 10/2000 X 100 = 0.5% of the populction failed

Step 6: On graph Figure J.9

n new == 6400 hours.
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7.6 Probiem 7.6

Use the technique of Section 7.6 to calculate bands on Weibull from [Migure J.10

St
S
atetata A s

n=10 k(n) = 0.246
Using F(x) = 1 - e"*"% Bands are:
[F(x) — 0.246, F(x) + 0.246]
For

g =2974 n=2895.42

2.974 2.974

] — @ [x/895.4277°_ 0 046 < | ~ o ~[x/8954217774 946

X Upper Band Lower Band
100 0.247 0
200 0.253 )
300 0.284 0
400 0.333 0
500 0.408 ]
600 0.508 0.016
800 0.757 0.265

1000 0.997 0.505

1200 1.0 0.662

2000 1.0 0.754

Now, plot on Figure J.11; since *“true” Weibull lies partly outside the confidence bqnds, we must
conclude tha. the Weibulls are significantly different.

e waT s st

5 b w e

PRI

L —

224 -




»-s [T T TITIO » y
iy WEIBULL DISTRIBUTION /
% B =1.59
-l 19=258.0 /|
SAMPLE SIZE = 10 [
. ® FAILURES = 10 ’
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TOTAL OPERATING TIME (HR)
FD 272256
Figure J.8. Problem 7-5
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T WEIBULL DISTRIBUTION -

8 =1.53 %

% = 258.0 .
- SAMPLE SIZE = 10 5
® FRILURES = 10
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10, . - 3. 4. 5.8.7. 00, 2. 3. 4. S, 8.7.8.9.1000. 2. 3. S« 7.8.9,10000,
TOTAL OPERATING TIME (HR)
FD 272255
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TOTAL OPERATING TIME (HR)

FD 272257
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FAILLRES = 10

SAVPLE SIZE = 10

9 =895.4

l.‘ 4y ‘ho‘o\.l-\ A 3
\%\—ﬁ\"t?izh L ) \d‘\\

%.9

"
»
=,
0
®
»

e e el o S o I8 (8 f AP EV JOR '] N | {;M..,(-'. ——dadl L]
4
i

L] ] o
O3RRNTIV0 INFN3d ALY WD

KRR K N ST S At S

[ K

TOTAL OPERATING TIME (HR)

FD 272258

Problem 7-6

Figure J.11.
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